This paper proposes a chaotic stochastic fractal search algorithm (CSFSA) method to solve the reconfiguration problem for minimizing the power loss and improving the voltage profile in distribution systems. The proposed method is a metaheuristic method developed for overcoming the weaknesses of the conventional SFSA with two processes of diffuse and update. In the first process, new points will be created from the initial points by the Gaussian walk. For the second one, SFSA will update better positions for the particles obtained in the diffusion process. In addition, this study has also integrated the chaos theory to improve the SFSA diffusion process as well as increase the rate of convergence and the ability to find the optimal solution. The effectiveness of the proposed CSFSA has been verified on the 33-bus, 84-bus, 119-bus, and 136-bus distribution systems. The obtained results from the test cases by CSFSA have been verified to those from other natural methods in the literature. The result comparison has indicated that the proposed method is more effective than many other methods for the test systems in terms of power loss reduction and voltage profile improvement. Therefore, the proposed CSFSA can be a very promising potential method for solving the reconfiguration problem in distribution systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.