Two types of halloysite collected from the upper (UPS) and lower (LOS) zones of a weathered pegmatite profile in the Thach Khoan area, Phu Tho were defined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TG and DTG), and N 2 adsorption-desorption isotherms. XRD analysis showed that halloysite and kaolinite coexist in samples of size fractions <2 µm. Semi-quantitative analysis by XRD after formamide (FA) treatment indicated that the halloysite contents are approximately 81% and 93% in UPS and LOS samples, respectively. The results of SEM and TEM analyses showed that while short halloysite type is mainly distributed in the upper zone, long halloysite type occurs primarily in the lower zone of the weathered pegmatite profile. The length of short halloysite ranging from 250 to 750 nm is most popular, accounting for 47.2% of halloysites in the UPS sample. Meanwhile, long halloysites which have the length of 750-1250 nm are dominant in the LOS sample with 69.9%. In addition, short halloysites with outer diameter of >100 nm constitute 79.1% of halloysites in the UPS sample while long halloysites with outer diameter of 50-100 nm make up 74.2% of halloysites in LOS sample. Specific surface areas are 15.7434 and 22.0211 m 2 /g and average pore sizes are 18.9837 and 17.0281 nm for the UPS and LOS samples, respectively. The analysis implies that although forming under same natural geographical and climatic conditions, halloysites at different depths in the weathered pegmatite profile may have different morphological and other properties.
Aquifer parameters and riverbed hydraulic resistance to an aquifer have an important role in the quantitative assessment of groundwater sources, especially the aquifer recharge from river. The analytical determination of aquifer parameters and riverbed hydraulic resistance to the aquifer is rather complicated in case if the water level in the river fluctuates before and during the pumping test time. This is especially true for Pleistocene aquifer along the Red River in Hanoi city, where the riverbed has been changed very much during the recent decades. A trial-error inverse analysis in the parameters' determination by a group pumping test data obtained with a test located close to the Red river bank in Sen Chieu area, Phuc Tho district, Hanoi city was carried out. Before and during the pumping test time the water level in the river changed five times. The results have shown that the Pleistocene aquifer has a relatively high hydraulic conductivity of 55.5 m/day, which provides a good role in the transport of a large volume of water recharged by the river to the abstraction wells located near the river. The aquifer storage coefficient had lightly decreased with the pumping time, which is corresponding to the physical nature of that the aquifer stativity is a function of the aquifer pressure. A special point is worthwhile to be noted that the Red river bed resistance to the Pleistocene is very low, about 0.537 days, which is corresponding to the increase of the distance from the river bank further from the well in 28.4 m to have the river as a specified water level boundary of the aquifer. In contrast, the 1990's investigations had found that the Red river bed resistance to the Pleistocene aquifer to be about 130 days (Tran Minh, 1984), which is corresponding to the increase of the distance from the river bank further from the well in a thousand of meters to have the river as a specified water level boundary for the aquifer.
Abstract:Fresh groundwater was found in the Pleistocene aquifer in the southern part of the Red River Delta in 70"s of last century. It is located mainly in the south of Nam Dinh province and small part in southeast of Ninh Binh province. The fresh-saline boundary seems to migrate southward recently and downsize the area of fresh groundwater. It is necessary to find out the mechanisms of salt intrusion into the zone of freshwater in order to mitigate the negative impacts to the quality of water supply. Based on the survey data of groundwater chemistry, transient electromagnetic sounding, borehole logging, drilling, and chemical analysis of pore water squeezed from the low permeable sediment in the study region, it was determined the current spatial distribution of saline water in the Pleistocene aquifer and in marine clay layers. By combining these data with the results from previous studies, this study has determined the mechanisms of the salt intrusion into the freshwater zone. It was found that salinity in the Pleistocene aquifer is generated from two main sources (1) Vertical salt intrusion from the upper marine clay layer which is controlled by the diffusion and density flow and (2) Horizontal saltwater incursion due to the high hydraulic gradient which is controlled by the convection and dispersion which was generated by over groundwater exploitation.
Groundwater in the Red River’s delta plain, North Vietnam, was found in Holocene, Pleistocene, Neogene and Triassic aquifers in fresh, brackish and saline types with a total dissolved solids (TDS) content ranging from less than 1 g L−1 to higher than 3 g L−1. Saline water exists inHolocene aquifer, but fresh and brackish water exist in Pleistocene, Neogene and Triassic aquifers. This study aims at the investigation into genesis and processes controlling quality of water resources in the region. For this isotopic, combined with geochemical techniques were applied. The techniques include: (i) measurement of water’s isotopic compositions (δ2H, δ18O) in water; (ii) determination of water’s age by the 3H- and 14C-dating method, and (iii) chemical analyses for main cations and anions in water. Results obtained revealed that saline water in Holocene aquifer was affected by seawater intrusion, fresh water in deeper aquifers originated from meteoric water but with old ages, up to 10,000–14,000 yr. The recharge area of fresh water is from the northwest highland at an altitude of 140–160m above sea level. The recharge water flows northwesterly towards southeasterly to the seacoast at a rate of 2.5m y−1. Chemistry of water resources in the study region is controlled by ferric, sulfate and nitrate reduction with organic matters as well as dissolution of inorganic carbonate minerals present in the sediment deposits. Results of isotopic signatures in water from Neogene, Triassic and Pleistocene aquifers suggested the three aquifers are connected to each other due to the existence of faults and fissures in Mesozoic basement across the delta region in combination with high rate of groundwater mining. Moreover, the high rate of freshwater abstraction from Pleistocene aquifer currently causes sea water to flow backwards to production well field located in the center of the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.