In microgrids, distributed generators that cannot be dispatched, such as a photovoltaic system, need to control their output power at the maximum power point. The fluctuation of their output power should be minimized with the support of the maximum power point tracking algorithm under the variation of ambient conditions. In this paper, a new maximum power point tracking method based on the parameters of power deviation (ΔPPV), voltage difference (ΔVPV), and duty cycle change (ΔD) is proposed for photovoltaic systems. The presented algorithm achieves the following good results: (i) when the solar radiance is fixed, the output power is stable around the maximum power point; (ii) when the solar radiance is rapidly changing, the generated power is always in the vicinity of maximum power points; (iii) the effectiveness of energy conversion is comparable to that of intelligent algorithms. The proposed algorithm is presented and compared with traditional and intelligent maximum power point tracking algorithms on the simulation model by MATLAB/Simulink under different radiation scenarios to prove the effectiveness of the proposed method.
Haptic devices had known as advanced technology with the goal is creating the experiences of touch by applying forces and motions to the operator based on force feedback. Especially in unmanned aerial vehicle (UAV) applications, the position of the end-effector Falcon haptic sets the velocity command for the UAV. And the operator can feel the experience vibration of the vehicle as to the acceleration or collision with other objects through a forces feedback to the haptic device. In some emergency cases, the haptic can report to the user the dangerous situation of the UAV by changing the position of the end-effector which is be obtained by changing the angle of the motor using the inverse kinematic equation. But this solution may not accurate due to the disturbance of the system. Therefore, we proposed a position controller for the haptic based on a discrete-time proportional integral derivative (PID) controller. A Novint Falcon haptic is used to demonstrate our proposal. From hardware parameters, a Jacobian matrix is calculated, which combines with the force output from the PID controller to make the torque for the motors of the haptic. The experiment was shown that the PID has high accuracy and a small error position.
Electro-hydraulic actuators have been widely applied in the industry because they have several major advantages. In this paper, we focused on controlling the mini motion package electro-hydraulics actuator. First, a mathematical model of the electro-hydraulic actuator (EHA) was implemented to apply the control process to the proposed system. Second, we applied the linear quadratic regulator (LQR) controller to a linear model that is converted from the nonlinear EHA system. Finally, the numerical simulation results were performed in which the results obtained from the LQR controller were compared with the PID controller to show the superiority of the proposed solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.