In this study, shrimp shell-derived chitosan (CS) and rice husk-derived biochar (RHB) were produced; CS and RHB were then used to synthesize chitosan-modified biochar (CSBC) hydrogel beads. N2 adsorption (77K), SEM-EDX and FT-IR techniques were used to evaluate the physicochemical properties of the adsorbents. A batch experiment was conducted to test the methyl orange (MO) adsorption performance of RHB and CSBC. The results showed that the MO adsorption process was strongly pH-dependent. The kinetics were well described by the pseudo-second-order and intra-particle diffusion models, assuming the chemisorption and intraparticle diffusion mechanisms govern the adsorption process. Homogeneous adsorption for MO on the surface of RHB and CSBC was also assumed since the isotherm data showed the best-fit to the Langmuir model. Under the experimental conditions of initial pH 3, dosage 0.2 g, contact time 240 min and temperature 298K, the maximum adsorption capacity of CSBC and RHB for MO dye adsorption was 38.75 mg.g−1 and 31.63 mg.g−1, respectively. This result demonstrated that biochar had better performance after modification with chitosan, which provided more functional groups (i.e., −NH2 and −OH groups) for enhanced electrostatic interactions and complexation between MO and CSBC. Overall, CSBC is an effective adsorbent for the removal of MO from aqueous solution.
This study investigates the adsorption of Safranin O (SO) from aqueous solution by both biochar and magnetic biochar derived from rice straw. Rice straw biochar (RSB) was made by pyrolysis in a furnace at 500 °C, using a heating rate of 10 °C·min−1 for 2 h in an oxygen-limited environment, whilst the magnetic rice straw biochar (MRSB) was produced via the chemical precipitation of Fe2+ and Fe3+. The physicochemical properties of the synthesized biochars were characterized using SEM, SEM- EDX, XRD, FTIR techniques, and N2 adsorption (77 K) and pHpzc measurements. Batch adsorption experiments were used to explore the effect of pH, biochar dosage, kinetics, and isotherms on the adsorption of SO. Experimental data of RSB and MRSB fit well into both Langmuir and Freundlich isotherm models, and were also well-explained by the Lagergren pseudo-second-order kinetic model. The maximum SO adsorption capacity of MRSB was found to be 41.59 mg/g, while for RSB the figure was 31.06 mg/g. The intra-particle diffusion model indicated that the intra-particle diffusion may not be the only rate-limiting step. The collective physical and chemical forces account for the adsorption mechanism of SO molecules by both RSB and MRSB adsorbents. The obtained results demonstrated that the magnetic biochar can partially enhance the SO adsorption capacity of its precursor biochar and also be easily separated from the solution by using an external magnet.
Mekong delta has been well known for rice production of Vietnam and had great contribution of rice export of Vietnam and for acid sulfate and alluvial soils. Greenhouse gases emission from rice has been raised for its contribution to global warming. The technique of alternate wetting and drying (AWD) has been recommended used for reduction of greenhouse gases. An experiment was set up with 3 factors of water management (AWD and CF-continuous flooding), soil type (acid sulfate and alluvial soil) and seasonal effect (Spring Summer, Summer Autumn and Winter Spring) for collecting emission of CH4, N2O and rice yield. The CH4emission was less in the AWD 2.76 mgCH4.m-2.h-1than in the CF 4.66 mgCH4.m-2.h-1(p<0.05). Also, the rice yield was 5.87 ton.ha-1.season-1for AWD and higher than 4.80 ton.ha-1.season-1for CF (p<0.05). The soil type did not affect the greenhouse gases emission and the rice yield. The N2O emission was very low and variation. The AWD should be applied broadly to all the area of rice production in the Mekong delta due to its less greenhouse gases emission.
In this study, the shrimp shell-derived chitosan was coated onto rice husk-derived biochar to form chitosan/biochar bio-composite beads. The physicochemical properties of biochar (BC) and chitosan/biochar beads (CS@BC) were characterized by BET, SEM-EDX, FTIR, and pH pzc analyses, which were then tested for their capacity to remove Safranin O (SO) from water. In kinetics, the pseudo-second-order model was found to well represent experimental data, indicating the adsorption was mainly a chemical process. The intra-particle diffusion model was not the sole rate-limiting step, because the results did not pass through the origin. In isotherms, both the Langmuir and Freundlich models described well the equilibrium adsorption data. The CS@BC adsorbent showed adsorption capacity at 77.94 mg/g for SO, which is higher than BC adsorbent with 62.25 mg/g (experimental conditions: pH ~ 7.0, dosage = 0.2 g, contact time = 240 min, and temperature = 298 K). The findings revealed that the biochar-loaded chitosan can improve the adsorption capacity of SO. It is predicted that the enhancement in the functional groups (i.e., -NH 2 and -OH groups) of CS@BC could contribute to the electrostatic interactions and the complexation between SO and CS@BC, thereby enhancing the Safranin O adsorption from water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.