Hierarchical nano/microscale α-Fe2O3 iron oxide particle system was prepared by an improved and modified polyol method with the use of NaBH4 agent with high heat treatment at 900 °C in air. Here, α-Fe2O3 iron oxide particles with different shapes were analyzed. The morphologies of the surfaces of α-Fe2O3 iron oxide particles show the oxide structures with the different nano/microscale ranges of grain sizes. In this research, we have found that grain and grain boundary growth limits can be determined in α-Fe2O3 iron oxide structure. This leads to the possibility of producing new iron oxide structures with distribution of desirable size grain and grain boundary. With α-Fe2O3 structure obtained, the magnetic properties of the α-Fe2O3 iron oxide system are different from those of previously reported studies. in national and international studies.Keywords: Iron iron oxides, α-Fe2O3, chemical polyol methods, heat treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.