CXCR4, the specific receptor for the chemokine SDF-1α that also binds CXCR4-using HIV gp120s, affects survival of different cell types, including neurons. However, current data show that the outcome of CXCR4 activation on neuronal survival may vary depending on the ligand and/or the cellular conditions. In this study, we have systematically compared the effects of SDF-1α and gp120 IIIB (with or without CD4) on several intracellular pathways involved in cell survival, including MAP kinases and Akt-dependent pathways. Our data show that gp120 IIIB and SDF-1α are both potent activators of MAP kinases in neuronal and non-neuronal cells, though the kinetic of these responses is slightly different. Furthermore, unlike SDF-1α, and independently of CD4, gp120 IIIB is unable to stimulate Akt and some of its antiapoptotic targets (NF-κB and MDM2)-despite its ability to activate other signaling pathways in the same conditions. Finally, the viral protein is more efficient in recruiting some effectors (e.g., JNK) than others in comparison with SDF-1α (EC 50 = 0.1 vs. 0.6 nM). We conclude that the intrinsic efficacy of the two ligands is significantly different and is pathway dependent. These findings have important implications for our understanding of CXCR4-mediated responses in the CNS, as well as the role of this coreceptor in HIV neuropathogenesis.
Objective. Fibroblast-like synoviocytes (FLS) are a major constituent of the hyperplastic synovial pannus that aggressively invades cartilage and bone during the course of rheumatoid arthritis (RA). Fractalkine (FKN/ CX 3 CL1) expression is up-regulated in RA synovium and RA synovial fluid. While RA FLS express the FKN receptor, CX 3 CR1, the pathophysiologic relevance of FKN stimulation of RA FLS is not understood. This study was undertaken to better characterize the relationship between FKN and the RA FLS that both produce it and express its receptor.Methods. RA FLS were subjected to chemotaxis and proliferation assays, Western blotting, enzymelinked immunosorbent assays, and filamentous actin staining to characterize the relationship between FKN and RA FLS.
Background/Aims: Angiogenesis is a well-established characteristic in the rheumatoid arthritis (RA) synovial pannus. We have previously demonstrated that fractalkine (Fkn/ CX3CL1) expression is significantly increased in the RA joint and that fractalkine induces angiogenesis. In this work we studied mechanisms through which Fkn functions as an angiogenic mediator. Methods: Human microvascular endothelial cells (HMVECs) and human umbilical vein endothelial cells (HUVECs) were stimulated with Fkn and analyzed by Western blotting or stained with Alexa Fluor® 488 phalloidin for F-actin to characterize the time frame of cytoskeletal rearrangement. Fkn-induced HUVEC chemotaxis was performed in the presence and absence of MAP kinase inhibitors. Results: Phalloidin staining of F-actin revealed significant cytoskeletal rearrangements in HUVECs and HMVECs starting as early as 10 min after Fkn stimulation. Western blotting demonstrated that HUVEC and HMVEC stimulation with Fkn for 1–30 min resulted in phosphorylation of JNK. Fkn also induces significant phosphorylation of Erk 1/2 in HUVECs over a time course ranging from 1 to 15 min. A somewhat similar time course (5–15 min) was detected for Erk 1/2 phosphorylation in HMVECs. Inhibitors of either JNK or Erk 1/2 nearly abolish Fkn-induced HUVEC migration. Conclusions: We demonstrate that Fkn induces significant alterations in cytoskeletal structure and specifically activates the MAP kinases, JNK and Erk 1/2, both of which appear necessary for endothelial cell migration. Our results suggest that the endogenous Fkn present in the RA joint may induce angiogenesis through activation of the JNK and Erk 1/2 pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.