This article presents a GPU-based single-unit deadlock detection methodology and its algorithm, GPU-OSDDA. Our GPU-based design utilizes parallel hardware of GPU to perform computations and thus is able to overcome the major limitation of prior hardware-based approaches by having the capability of handling thousands of processes and resources, whilst achieving real-world run-times. By utilizing a bit-vector technique for storing algorithm matrices and designing novel, efficient algorithmic methods, we not only reduce memory usage dramatically but also achieve two orders of magnitude speedup over CPU equivalents. Additionally, GPU-OSDDA acts as an interactive service to the CPU, because all of the aforementioned computations and matrix management techniques take place on the GPU, requiring minimal interaction with the CPU. GPU-OSDDA is implemented on three GPU cards: Tesla C2050, Tesla K20c, and Titan X. Our design shows overall speedups of 6-595X over CPU equivalents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.