Anion exchange membrane fuel cells (AEMFCs) are considered as potential future alternative for proton exchange membrane fuel cells (PEMFCs) due to their potential to not require platinum. However, many properties of alkaline ionomers/membranes are not yet well-characterized. The goal of this study is to evaluate the suitability of current AEMs for application in a wide range of operating conditions, especially at temperatures below the freezing point of water. For this, a method was developed to reversibly convert the counter ion of the cationic group in the membrane electrode assembly (MEA) from (bi-)carbonate to hydroxide and vice versa. Subsequently, the through-plane membrane conductivity in an AEMFC was evaluated by electrochemical impedance spectroscopy at different temperatures (−20°C to 50°C) and water contents, whereby the electrical resistance contribution (contact and through-plane) to the high frequency resistance of the cell was determined in an ex-situ experiment. The results obtained in this study were compared to a standard PEM (Nafion 212) and to a sulfonic acid based membrane with a hydrocarbon backbone. The here acquired conductivity data suggest that the conductivity of the evaluated anion exchange membrane, particularly in its (bi-)carbonate form, would be too low at sub-zero temperature to meet automotive freeze start requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.