The purpose of 3D bioprinting technology is to design and create functional 3D tissues or organs in situ for in vivo applications. 3D cell-printing, or additive biomanufacturing, allows the selection of biomaterials and cells (bioink), and the fabrication of cell-laden structures in high resolution. 3D cell-printed structures have also been used for applications such as research models, drug delivery and discovery, and toxicology. Recently, numerous attempts have been made to fabricate tissues and organs by using various 3D printing techniques. However, challenges such as vascularization are yet to be solved. This article reviews the most commonly used 3D cell-printing techniques with their advantages and drawbacks. Furthermore, up-to-date achievements of 3D bioprinting in in vivo applications are introduced, and prospects for the future of 3D cell-printing technology are discussed.
A forecast model using syndromic surveillance based on the number of ED visits was feasible for early detection of ED respiratory infectious disease outbreak.
While multiple studies show that simulation methods help in educating surgical trainees, few studies have focused on developing systems that help trainees to adopt the most effective body motions. This is the first study to use a Perception Neuron® system to evaluate the relationship between body motions and simulation scores. Ten medical students participated in this study. All completed two standard tasks with da Vinci Skills Simulator (dVSS) and five standard tasks with thyroidectomy training model. This was repeated. Thyroidectomy training was conducted while participants wore a perception neuron. Motion capture (MC) score that indicated how long the tasks took to complete and each participant’s economy-of-motion that was used was calculated. Correlations between the three scores were assessed by Pearson’s correlation analyses. The 20 trials were categorized as low, moderate, and high overall-proficiency by summing the training model, dVSS, and MC scores. The difference between the low and high overall-proficiency trials in terms of economy-of-motion of the left or right hand was assessed by two-tailed t-test. Relative to cycle 1, the training model, dVSS, and MC scores all increased significantly in cycle 2. Three scores correlated significantly with each other. Six, eight, and six trials were classified as low, moderate, and high overall-proficiency, respectively. Low- and high-scoring trials differed significantly in terms of right (dominant) hand economy-of-motion (675.2 mm and 369.4 mm, respectively) (p = 0.043). Perception Neuron® system can be applied to simulation-based training of surgical trainees. The motion analysis score is related to the traditional scoring system.
In the context of stroke rehabilitation, simple structures and user-intent driven actuation are relevant features to facilitate neuroplasticity as well as deliver a sufficient number of repetitions during a single therapy session. A novel robotic treatment device for distal upper limb rehabilitation in stroke patients was developed, and a usability test was performed to assess its clinical feasibility. The rehabilitation robot was designed as a two-axis exoskeleton actuated by electric motors, consisting of forearm supination/pronation and hand grasp/release, which were selected based on a kinematic analysis of essential daily activities. A vision-assisted algorithm was utilized for user-intent extraction in a human-in-the-loop concept. A usability test was performed on six physiatrists, five biomedical engineers, five rehabilitation therapists, two chronic stroke patients, and two caregivers of the patients. After sufficient instruction, all subjects tested the robot for a minimum of 10 min and completed the evaluation form using a 7-point Likert scale. The participants found the device interesting (5.7 ± 1.2), motivating (5.8 ± 0.9), and as having less possibility of causing injury or safety issues (6.1 ± 1.1); however, the appropriateness of difficulty (4.8 ± 1.9) and comfort level (4.9 ± 1.3) were found to be relatively low. Further development of the current device would provide a good treatment option as a simple, low-cost, and clinically feasible rehabilitation robot for stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.