Model light-confining Tamm plasmon cavities based on gold-coated nanoporous anodic alumina photonic crystals (TMM–NAA–PCs) with spectrally tunable resonance bands were engineered. Laplacian and Lorentzian NAA–PCs produced by a modified Gaussian-like pulse anodization approach showed well-resolved, high-quality photonic stopbands, the position of which was precisely controlled across the visible spectrum by the periodicity in the input anodization profile. These PC structures were used as a platform material to develop highly reflective distributed Bragg mirrors, the top sides of which were coated with a thin gold film. The resulting nanoporous hybrid plasmonic–photonic crystals showed strong light-confining properties attributed to Tamm plasmon resonances at three specific positions of the visible spectrum. These structures achieved high sensitivity to changes in refractive index, with a sensitivity of ∼106 nm RIU–1. The optical sensitivity of TMM–NAA–PCs was assessed in real time, using a model chemically selective binding interaction between thiol-containing molecules and gold. The optical sensitivity was found to rely linearly on the spectral position of the Tamm resonance band, for both Laplacian and Lorentzian TMM–NAA–PCs. The density of self-assembled monolayers of thiol-containing analyte molecules formed on the surface of the metallic film directly contributes to the dependence of sensitivity on TMM resonance position in these optical transducers. Our findings provide opportunities to integrate TMM modes in NAA-based photonic crystal structures, with promising potential for optical technologies and applications requiring high-quality surface plasmon resonance bands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.