The present work is devoted to the numerical study of laminar magnetohydrodynamic (MHD) conjugate natural convection flow from a horizontal circular cylinder taking into account Joule heating and internal heat generation. The governing equations and the associated boundary conditions for this analysis are made nondimensional forms using a set of dimensionless variables. Thus, the nondimensional governing equations are solved numerically using finite difference method with Keller box scheme. Numerical outcomes are found for different values of the magnetic parameter, conjugate conduction parameter, Prandtl number, Joule heating parameter, and heat generation parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and the rate of heat transfer along the surface. It is found that the skin friction increases, and heat transfer rate decreases for escalating value of Joule heating parameter and heat generation parameter. Results are presented graphically with detailed discussion.
This article investigates the effects of radiation and heat generation on magnetohydrodynamic( MHD) natural convection flow of an incompressible viscous electrically conducting fluid along a vertically placed flat plate in presence of viscous dissipation and heat conduction. Appropriate transformations were employed to transform governing equations of this flow into dimensionless form and then solved using the implicit finite difference method with Keller box scheme. The resulting numerical solutions of transformed governing equations are presented graphically in terms of velocity profile, temperature distribution, skin friction coefficient and surface temperature and the effects of magnetic parameter (M), radiation parameter (R), Prandtl number (Pr) and heat generation parameter (Q) and viscous dissipation parameter (N) on the flow have been studied with the help of graphs. Keywords: Radiation; Heat Generation Parameter; Viscous Dissipation Parameter; MHD; Finite Difference Method; Vertical Flat Plate. DOI: http://dx.doi.org/10.3329/diujst.v6i1.9330 DIUJST 2011; 6(1): 20-29
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.