This work (Part (I)) together with its companion (Part (II) [45]) develops a new framework for stochastic functional Kolmogorov equations, which are nonlinear stochastic differential equations depending on the current as well as the past states. Because of the complexity of the results, it seems to be instructive to divide our contributions to two parts. In contrast to the existing literature, our effort is to advance the knowledge by allowing delay and past dependence, yielding essential utility to a wide range of applications. A long-standing question of fundamental importance pertaining to biology and ecology is: What are the minimal necessary and sufficient conditions for long-term persistence and extinction (or for long-term coexistence of interacting species) of a population? Regardless of the particular applications encountered, persistence and extinction are properties shared by Kolmogorov systems. While there are many excellent treaties of stochastic-differential-equation-based Kolmogorov equations, the work on stochastic Kolmogorov equations with past dependence is still scarce. Our aim here is to answer the aforementioned basic question. This work, Part (I), is devoted to characterization of persistence, whereas its companion, Part (II) [45], is devoted to extinction. The main techniques used in this paper include the newly developed functional Itô formula and asymptotic coupling and Harris-like theory for infinite dimensional systems specialized to functional equations. General theorems for stochastic functional Kolmogorov equations are developed first. Then a number of applications are examined to obtain new results substantially covering, improving, and extending the existing literature. Furthermore, these conditions reduce to that of Kolmogorov systems when there is no past dependence.
This work is devoted to a class of Langevin equations involving strong damping and fast Markov switching. Modeling using continuous dynamics and discrete events together with their interactions much enlarged the applicability of Langevin equations in a random environment. Strong damping and fast switching are characterized by the use of multiple small parameters, resulting in singularly perturbed systems. The motivation of our work stems from the reduction of complexity for complex systems. Under suitable conditions, it is established that the solutions of the Langevin equations satisfy a large deviations principle. Then, we apply our results to statistical physics problems of a small particle in time-inhomogeneous environment and low temperature. Some connections to other fields in physics are also given.
This work proposes and analyzes a family of spatially inhomogeneous epidemic models. This is our first effort to use stochastic partial differential equations (SPDEs) to model epidemic dynamics with spatial variations and environmental noise. After setting up the problem, the existence and uniqueness of solutions of the underlying SPDEs are examined. Then, definitions of permanence and extinction are given, and certain sufficient conditions are provided for permanence and extinction. Our hope is that this paper will open up windows for investigation of epidemic models from a new angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.