Starch-branching enzyme catalyzes the cleavage of α-1, 4-linkages and the subsequent transfer of α-1,4 glucan to form an α-1,6 branch point in amylopectin. Sequence analysis of the rice-branching enzyme I (BEI) indicated a modular structure in which the central α-amylase domain is flanked on each side by the N-terminal carbohydrate-binding module 48 and the α-amylase C-domain. We determined the crystal structure of BEI at a resolution of 1.9 Å by molecular replacement using the Escherichia coli glycogen BE as a search model. Despite three modular structures, BEI is roughly ellipsoidal in shape with two globular domains that form a prominent groove which is proposed to serve as the α-polyglucan-binding site. Amino acid residues Asp344 and Glu399, which are postulated to play an essential role in catalysis as a nucleophile and a general acid/base, respectively, are located at a central cleft in the groove. Moreover, structural comparison revealed that in BEI, extended loop structures cause a narrowing of the substrate-binding site, whereas shortened loop structures make a larger space at the corresponding subsite in the Klebsiella pneumoniae pullulanase. This structural difference might be attributed to distinct catalytic reactions, transglycosylation and hydrolysis, respectively, by BEI and pullulanase.
The Isd (iron-regulated surface determinant) system of the human pathogen Staphylococcus aureus is responsible for the acquisition of heme from the host organism. We recently reported that the extracellular heme receptor IsdH-NEAT3 captures and transfers noniron antimicrobial porphyrins containing metals in oxidation state (III). However, it is unclear if geometric factors such as the size of the metal (ionic radius) affect binding and transfer of metalloporphyrins. We carried out an ample structural, functional, and thermodynamic analysis of the binding properties of antimicrobial indium(III)-porphyrin, which bears a much larger metal ion than the iron(III) of the natural ligand heme. The results demonstrate that the NEAT3 receptor recognizes the In(III)-containing PPIX in a manner very similar to that of heme. Site-directed mutagenesis identifies Tyr642 as the central element in the recognition mechanism as suggested from the crystal structures. Importantly, the NEAT3 receptor possesses the remarkable ability to capture dimers of metalloporphyrin. Molecular dynamics simulations reveal that IsdH-NEAT3 does not require conformational changes, or large rearrangements of the residues within its binding site, to accommodate the much larger (heme) 2 ligand. We discuss the implications of these findings for the design of potent inhibitors against this family of key receptors of S. aureus.
Starch branching enzyme (SBE) catalyzes the cleavage of alpha-1.4-linkages and the subsequent transfer of alpha-1.4 glucan to form an alpha-1.6 branch point in amylopectin. We overproduced rice branching enzyme I (BEI) in Escherichia coli cells, and the resulting enzyme (rBEI) was characterized with respect to biochemical and crystallographic properties. Specific activities were calculated to be 20.8 units/mg and 2.5 units/mg respectively when amylose and amylopectin were used as substrates. Site-directed mutations of Tyr235, Asp270, His275, Arg342, Asp344, Glu399, and His467 conserved in the alpha-amylase family enzymes drastically reduced catalytic activity of rBEI. This result suggests that the structures of BEI and the other alpha-amylase family enzymes are similar and that they share common catalytic mechanisms. Crystals of rBEI were grown under appropriate conditions and the crystals diffracted to a resolution of 3.0 A on a synchrotron X-ray source.
This study aims to analyze the length polymorphisms in sequence-tagged-site (STS) sY1291 of the Y chromosome in Vietnamese men of infertile couples. All 322 DNA samples were amplified with the sY1291 primer by the quantitative fluorescent polymerase chain reaction (QF-PCR) assay. DNA sequencing technique was employed to evaluate the accuracy of QF-PCR results. The study showed 273 out of 322 DNA samples had the presence of STS sY1291, accounted for 84.78%. The QF-PCR results showed that there were various lengths in STS sY1291: 507 bp, 512 bp, 523 bp and 527 bp. The most prevalent length in STS sY1291 was 507 bp (87.5%), the others were 512 bp (4.8%), 523 bp (4.8%) and 527 bp (2.9%). We found that the observed length polymorphisms derived from differences in the number of mononucleotide Thymine (T) repeats in its structure. It stretched from 22 T to 39 T. DNA sequencing results identified that the number of mononucleotide T repeats causes these polymorphisms. However, the pair-wise alignment between the obtained and reference sequence was 77%. It can be seen that the length polymorphisms in STS sY1291 observed in QF-PCR results was accurate but it is still difficult to sequence fragments with mononucleotide repeats.
The rice branching enzyme I (BEI) overproduced in Escherichia coli cells was investigated with respect to action on starches. BEI treatment decreased the turbidity of starch suspensions with distinct pasting behaviors from a native starch. This result suggests the great potential of BEI as a molecular tool for the production of a novel glucan polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.