Foodborne viruses, particularly human norovirus, are a concern for public health, especially in fresh vegetables and other minimally processed foods that may not undergo sufficient decontamination. It is necessary to explore novel nonthermal techniques for preventing foodborne viral contamination. In this study, aqueous extracts of six raw food materials (flower buds of clove, fenugreek seeds, garlic and onion bulbs, ginger rhizomes, and jalapeño peppers) were tested for antiviral activity against feline calicivirus (FCV) as a surrogate for human norovirus. The antiviral assay was performed using dilutions of the extracts below the maximum nontoxic concentrations of the extracts to the host cells of FCV, Crandell-Reese feline kidney (CRFK) cells. No antiviral effect was seen when the host cells were pretreated with any of the extracts. However, pretreatment of FCV with nondiluted clove and ginger extracts inactivated 6.0 and 2.7 log of the initial titer of the virus, respectively. Also, significant dosedependent inactivation of FCV was seen when host cells were treated with clove and ginger extracts at the time of infection or postinfection at concentrations equal to or lower than the maximum nontoxic concentrations. By comprehensive two-dimensional gas chromatography-mass spectrometry analysis, eugenol (29.5%) and R-(-)-1,2-propanediol (10.7%) were identified as the major components of clove and ginger extracts, respectively. The antiviral effect of the pure eugenol itself was tested; it showed antiviral activity similar to that of clove extract, albeit at a lower level, which indicates that some other clove extract constituents, along with eugenol, are responsible for inactivation of FCV. These results showed that the aqueous extracts of clove and ginger hold promise for prevention of foodborne viral contamination.
NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.
Microglia become persistently infected during Theiler’s murine encephalomyelitis virus (TMEV) infection in the central nervous system (CNS) of susceptible mice. We have previously shown that microglia infected with TMEV become activated through the innate immune receptors to express type I interferons, cytokines, and chemokines. Persistent TMEV infection in the CNS promotes chronic neuroinflammation and development of demyelinating disease similar to multiple sclerosis. In the current studies, we wanted to determine whether TMEV-infected microglia secrete exosomes which contribute to neuroinflammation in the CNS thus promoting the development of demyelinating disease. Exosomes are vesicles containing RNA, DNA, and proteins that are released from one cell and taken up by another cell to facilitate communication between cells. These studies isolated exosomes secreted by microglia during TMEV infection in vitro as well as exosomes secreted by microglia during early TMEV infection in mice. These studies show that microglia secrete exosomes during TMEV infection which contain the viral RNA coding region. The exosomes secreted by microglia during TMEV infection can be taken up by uninfected bystander cells, including CNS resident microglia, astrocytes, and neurons. The viral RNA in the exosomes can be transferred to the bystander cells. In addition, the bystander cells that took up these exosomes were activated through the innate immune response to express type I interferons, IFNα and IFNβ, pro-inflammatory cytokines, IL-6, IL-12, and TNFα, and chemokines, CCL2. Most interestingly, exosomes secreted by microglia during early TMEV infection in mice activated an inflammatory response when transferred to the brains of naïve mice. These results show that exosomes secreted by microglia during early TMEV infection contain viral RNA and can activate uninfected bystander CNS cells to promote an inflammatory immune response. Thus, exosomes secreted by microglia during virus infection may promote viral persistence and neuroinflammation which contributes to the development of demyelinating disease.
Monocytes are among the first cells to infiltrate the tumor microenvironment. The conversion of monocytes to suppressor cells in the tumor microenvironment is crucial in evasion of the immune response and tumor maintenance. Tumor cells may secrete products that promote the conversion of monocytes to suppressor cells. Cells secrete extracellular vesicles (EVs) containing cargos of genetic materials and proteins as a way to communicate with neighboring cells. During pathologic conditions like cancers, tumor cells increase their EVs production containing microRNA, RNA, and proteins that may affect the immune cell response, contributing to the immunosuppressive microenvironment. Our studies show that EVs secreted by a wide range of murine tumor cells, including osteosarcoma, glioma, colon carcinoma, sarcoma, and melanoma, can be taken up by bone marrow-derived monocytes. The monocytes that took up the EVs secreted by tumor cells matured toward an immune-suppressive phenotype by upregulating the expression of suppressive cytokines and effector molecules. The monocytes also downregulated MHC class II and costimulatory molecules while increasing the expression of PD-L1 on their surface after taking up EVs from tumor cells. Most importantly, monocytes exposed to EVs secreted by tumor cells suppressed activated Agspecific CD4 + T cells. These results show that tumor cells from several different tumor types secrete EVs which promote the conversion of monocytes into suppressor cells, thus promoting immune evasion. These studies suggest that EVs secreted by tumors are potentially a new target for future cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.