Angka Melek Huruf (AMH) merupakan salah satu komponen indeks pembangunan manusia (IPM). Mengacu pada data Badan Pusat Statistik (BPS) Provinsi Bali 2018, AMH Kabupaten Karangasem pada tahun 2018 memiliki nilai paling rendah yaitu 84,91 persen. Nilai ini cukup jauh dibandingkan AMH Kota Denpasar yang hampir mencapai 100 persen, tepatnya 98,02 persen. Dengan demikian, penting untuk membuat suatu model yang dapat memprediksi nilai AMH di Kabupaten Karangasem pada tahun yang akan datang. Penelitian ini menggunakan data Persentase Penduduk Miskin (PPM) dan Angka Partisipasi Sekolah (APS) di Kabupaten Karangasem pada tahun 2007 s.d. 2018 sebagai input dan AMH Kabupaten Karangasem pada tahun 2007 s.d. 2018 sebagai output. Setelah diproses menggunakan algoritma backpropagation, diperoleh model dengan overfitting paling minimal yaitu model 2-5-1 dengan rata-rata error per iterasi sebesar 0.00049386.
Myopia is a vision disorder that causes the sufferers unable to see distant objects. The degree of myopia in humans can changes, both increasing and decreasing. The increasing of myopia degree is proportional to the potential of other visual disorders, such as cataracts, retinal detachment, and glaucoma. Therefore, the increasing of myopia degree needs to be watched out. Several previous studies only considered the time factor in predicting the changes of myopia degree. In fact, the changes of myopia degree also influenced by some factors that related to individual identity and behavior. This study aims to predict the changes of myopia degree in humans based on some factors that causes myopia.. This study uses data that has been scaled with the fuzzy membership function to be processed with ANN for predicting the changes of myopia degree. By ANN 6-2-3 architecture that uses 80 training data, 20 testing data, and 1 predictive data, the prediction result of the changes of myopia degree in the right eye is 1.1 dioptri, in the left eye is 1.2 dioptri and the accumulated of both is 2.3 dioptri with accuration values 87.79%, 78.47%, and 83.21%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.