Kemiskinan merupakan salah satu permasalahan kependudukan yang banyak terjadi pada negara berkembang, salah satunya Indonesia. Badan Pusat Statistik (BPS) mencatat bahwa persentase penduduk miskin di Indonesia tahun 2017 mencapai 10,12 persen. Salah satu provinsi dengan persentase penduduk miskin tertinggi di Indonesia adalah Provinsi Papua, yakni sebesar 27,76 persen. Penelitian ini bertujuan untuk melakukan klasifikasi rumah tangga berdasarkan status ekonominya di Provinsi Papua yang diperoleh dari Survei Sosial Ekonomi Nasional (Susenas) 2017 menggunakan teknik data mining. Metode analisis yang digunakan adalah metode pengklasifikasian Naive Bayes. Variabel yang digunakan antara lain jenis kelamin, pendidikan KRT, lapangan usaha KRT, jenis atap terluas, jenis dinding terluas, jenis lantai terluas, sumber air minum, sumber penerangan, dan bahan bakar untuk memasak. Berdasarkan hasil analisis, disimpulkan bahwa pengklasifikasian status ekonomi rumah tangga di Provinsi Papua memiliki tingkat akurasi sebesar 80 persen dan termasuk dalam kategori “good” dengan nilai presisi sebesar 52 persen dan spesifisitas sebesar 91 persen.
Tuberculosis is caused by Mycobacterium Tuberculosis (MT). MT usually attacks the lungs and causes pulmonary-tuberculosis. Tuberculosis cases in Indonesia keep increasing over the years. The presence of Multidrug-Resistant Tuberculosis (MDR-TB) has been one of the main obstacles in eradicating tuberculosis because it couldn’t be cured using standard drugs. In fact, the success rate of MDR-TB treatment in 2019 at the global level was only 57 percent. Research on MDR-TB can be related to the spatial aspect because this disease can be transmitted quickly. This study aims to obtain an overview and model the number of Indonesia’s pulmonary MDR-TB cases in 2019 using the Geographically Weighted Negative Binomial Regression (GWNBR) method. The independent variables used in the model are population density, percentage of poor population, health center ratio per 100 thousand population, the ratio of health workers per 10 thousand population, percentage of smokers, percentage of the region with PHBS policies, and percentage of BCG immunization coverage. The finding reveals that the model forms 12 regional groups based on significant variables where GWNBR gives better results compared to NBR. The significant spatial correlation implies that the collaboration among regional governments plays an important role in reducing the number of pulmonary MDR-TB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.