The recently discovered regulators of G-protein signaling (RGS) proteins potently modulate the functioning of heterotrimeric G-proteins by stimulating the GTPase activity of G-protein ␣ subunits. The mRNAs for numerous subtypes of putative RGS proteins have been identified in mammalian tissues, but little is known about their expression in brain. We performed a systematic survey of the localization of mRNAs encoding nine of these RGSs, RGS3-RGS11, in brain by in situ hybridization. Striking region-specific patterns of expression were observed. Five subtypes, RGS4, RGS7, RGS8, RGS9, and RGS10 mRNAs, are densely expressed in brain, whereas the other subtypes (RGS3, RGS5, RGS6, and RGS11) are expressed at lower density and in more restricted regions. RGS4 mRNA is notable for its dense expression in neocortex, piriform cortex, caudoputamen, and ventrobasal thalamus. RGS8 mRNA is highly expressed in the cerebellar Purkinje cell layer as well as in several midbrain nuclei. RGS9 mRNA is remarkable for its nearly exclusive enrichment in striatal regions. RGS10 mRNA is densely expressed in dentate gyrus granule cells, superficial layers of neocortex, and dorsal raphe. To assess whether the expression of RGS mRNAs can be regulated, we examined the effect of an acute seizure on levels of RGS7, RGS8, and RGS10 mRNAs in hippocampus. Of the three subtypes, changes in RGS10 levels were most pronounced, decreasing by ϳ40% in a timedependent manner in response to a single seizure. These results, which document highly specific patterns of RGS mRNA expression in brain and their ability to be regulated in a dynamic manner, support the view that RGS proteins may play an important role in determining the intensity and specificity of signaling pathways in brain as well as their adaptations to synaptic activity. Key words: seizure; gene expression; striatum; neocortex; GTPase-activating proteins; Sst2; GAIPThe heterotrimeric G-proteins play a critical role in brain signal transduction by coupling extracellular receptors to intracellular signaling pathways. G-proteins are composed of single ␣, , and ␥ subunits. The ␣ subunits are guanine nucleotide-binding proteins that are regulated through cycles of GTP and GDP binding. In the inactive state, the ␣ subunits are bound to GDP. They are activated by G-protein-coupled receptors (bound to ligand), which trigger the dissociation of GDP and the subsequent binding of GTP, which activates the ␣ subunit. The active state is terminated when the intrinsic GTPase activity contained within the ␣ subunit hydrolyzes GTP to GDP (for review, see Neer, 1995).Recently, a newly discovered class of protein, termed regulators of G-protein signaling (RGS) proteins, has been shown to modulate the f unctioning of G-proteins by activating the intrinsic GTPase activity of the ␣ subunits (for review, see Dohlman and Thorner, 1997;Koelle, 1997;Neer, 1997). RGS proteins thereby reduce the duration of the activated GTPbound state of the ␣ subunit, which inhibits G-protein f unction. RGS proteins were first discover...
Background-Cellular hypertrophy requires coordinated regulation of progrowth and antigrowth mechanisms. In cultured neonatal cardiomyocytes, Foxo transcription factors trigger an atrophy-related gene program that counters hypertrophic growth. However, downstream molecular events are not yet well defined. Methods and Results-Here, we report that expression of either Foxo1 or Foxo3 in cardiomyocytes attenuates calcineurin phosphatase activity and inhibits agonist-induced hypertrophic growth. Consistent with these results, Foxo proteins decrease calcineurin phosphatase activity and repress both basal and hypertrophic agonist-induced expression of MCIP1.4, a direct downstream target of the calcineurin/NFAT pathway. Furthermore, hearts from Foxo3-null mice exhibit increased MCIP1.4 abundance and a hypertrophic phenotype with normal systolic function at baseline. Together, these results suggest that Foxo proteins repress cardiac growth at least in part through inhibition of the calcineurin/NFAT pathway. Given that hypertrophic growth of the heart occurs in multiple contexts, our findings also suggest that certain hypertrophic signals are capable of overriding the antigrowth program induced by Foxo. Consistent with this, multiple hypertrophic agonists triggered inactivation of Foxo proteins in cardiomyocytes through a mechanism requiring the PI3K/Akt pathway. In addition, both Foxo1 and Foxo3 are phosphorylated and consequently inactivated in hearts undergoing hypertrophic growth induced by hemodynamic stress. Key Words: angiotensin Ⅲ calcineurin Ⅲ hypertrophy I n response to stress from neurohumoral activation, hypertension, or other myocardial injury, the heart initially compensates with an adaptive hypertrophic increase in mass. The resulting growth and remodeling response alters the balance between protein synthesis and protein degradation. In skeletal muscle, activation of progrowth signaling pathways is accompanied by deactivation of pathways that promote proteolysis. Prominent among the atrophy-inducing pathways are those governed by Forkhead box transcription factors, O subfamily (Foxo). Conclusions-This Clinical Perspective p 1168Foxo transcription factors regulate key physiological functions, including responses to stress, cell-cycle progression, protein degradation, and apoptosis. 1,2 There are 4 mammalian Foxo genes: Foxo1 (FKHR), Foxo3 (FKHRL1), Foxo4 (AFX), and Foxo6. The transcriptional activities of Foxo proteins are governed by posttranslational modifications such as phosphorylation and acetylation. With respect to myocyte growth and remodeling, Foxo proteins induce ubiquitin ligases and promote proteolysis in skeletal muscle. 3,4 In heart, a number of signaling cascades involving transcription factors, kinases, and G-protein-coupled receptors are implicated in the regulation of muscle growth (see reviews 5-7 ). Among these, the calcineurin/nuclear factor of activated T cells (NFAT) pathway has been shown to be a key signaling cascade that promotes cardiac hypertrophy. 8 It has been reported recently...
Miscible-displacement experiments are conducted with perfluorooctanoic acid (PFOA) to determine the contribution of adsorption at the air-water interface to retention during transport in water-unsaturated porous media. Column experiments were conducted with two sands of different diameter at different PFOA input concentrations, water saturations, and pore-water velocities to evaluate the impact of system variables on retardation. The breakthrough curves for unsaturated conditions exhibited greater retardation than those obtained for saturated conditions, demonstrating the significant impact of air-water interfacial adsorption on PFOA retention. Retardation was greater for lower water saturations and smaller grain diameter, consistent with the impact of system conditions on the magnitude of air-water interfacial area in porous media. Retardation was greater for lower input concentrations of PFOA for a given water saturation, consistent with the nonlinear nature of surfactant fluid-fluid interfacial adsorption. Retardation factors predicted using independently determined parameter values compared very well to the measured values. The results showed that adsorption at the air-water interface is a significant source of retention for PFOA, contributing approximately 50-75% of total retention, for the test systems. The significant magnitude of air-water interfacial adsorption measured in this work has ramifications for accurate determination of PFAS migration potential in vadose zones.
Insulin resistance and metabolic syndrome are rapidly expanding public health problems. Acting through the PI3K/Akt pathway, insulin and insulin-like growth factor-1 (IGF-1) inactivate FoxO transcription factors, a class of highly conserved proteins important in numerous physiological functions. However, even as FoxO is a downstream target of insulin, FoxO factors also control upstream signaling elements governing insulin sensitivity and glucose metabolism. Here, we report that sustained activation of either FoxO1 or FoxO3 in cardiac myocytes increases basal levels of Akt phosphorylation and kinase activity. FoxO-activated Akt directly interacts with and phosphorylates FoxO, providing feedback inhibition. We reported previously that FoxO factors attenuate cardiomyocyte calcineurin (PP2B) activity. We now show that calcineurin forms a complex with Akt and inhibition of calcineurin enhances Akt phosphorylation. In addition, FoxO activity suppresses protein phosphatase 2A (PP2A) and disrupts Akt-PP2A and Akt-calcineurin interactions. Repression of Akt-PP2A/B interactions and phosphatase activities contributes, at least in part, to FoxO-dependent increases in Akt phosphorylation and kinase activity. Resveratrol, an activator of Sirt1, increases the transcriptional activity of FoxO1 and triggers Akt phosphorylation in heart. Importantly, FoxO-mediated increases in Akt activity diminish insulin signaling, as manifested by reduced Akt phosphorylation, reduced membrane translocation of Glut4, and decreased insulintriggered glucose uptake. Also, inactivation of the gene coding for FoxO3 enhances insulin-dependent Akt phosphorylation. Taken together, this study demonstrates that changes in FoxO activity have a dose-responsive repressive effect on insulin signaling in cardiomyocytes through inhibition of protein phosphatases, which leads to altered Akt activation, reduced insulin sensitivity, and impaired glucose metabolism.cardiomyocyte ͉ calcineurin ͉ insulin resistance ͉ cardiomyopathy
The protein PCSK9 (proprotein convertase subtilisin/kexin type 9) is a key regulator of low-density lipoprotein receptor (LDLR) levels and cardiovascular health. We have determined the crystal structure of LDLR bound to PCSK9 at neutral pH. The structure shows LDLR in a new extended conformation. The PCSK9 C-terminal domain is solvent exposed, enabling cofactor binding, whereas the catalytic domain and prodomain interact with LDLR epidermal growth factor(A) and b-propeller domains, respectively. Thus, PCSK9 seems to hold LDLR in an extended conformation and to interfere with conformational rearrangements required for LDLR recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.