Deep Neural Network (DNN) has recently achieved outstanding performance in a variety of computer vision tasks, including facial attribute classification. The great success of classifying facial attributes with DNN often relies on a massive amount of labelled data. However, in real-world applications, labelled data are only provided for some commonly used attributes (such as age, gender); whereas, unlabelled data are available for other attributes (such as attraction, hairline). To address the above problem, we propose a novel deep transfer neural network method based on multi-label learning for facial attribute classification, termed FMTNet, which consists of three sub-networks: the Face detection Network (FNet), the Multi-label learning Network (MNet) and the Transfer learning Network (TNet). Firstly, based on the Faster Region-based Convolutional Neural Network (Faster R-CNN), FNet is finetuned for face detection. Then, MNet is fine-tuned by FNet to predict multiple attributes with labelled data, where an effective loss weight scheme is developed to explicitly exploit the correlation between facial attributes based on attribute grouping. Finally, based on MNet, TNet is trained by taking advantage of unsupervised domain adaptation for unlabelled facial attribute classification. The three sub-networks are tightly coupled to perform effective facial attribute classification. A distinguishing characteristic of the proposed FMTNet method is that the three sub-networks (FNet, MNet and TNet) are constructed in a similar network structure. Extensive experimental results on challenging face datasets demonstrate the effectiveness of our proposed method compared with several state-of-the-art methods.
Recently, facial attribute classification (FAC) has attracted significant attention in the computer vision community. Great progress has been made along with the availability of challenging FAC datasets. However, conventional FAC methods usually firstly pre-process the input images (i.e., perform face detection and alignment) and then predict facial attributes. These methods ignore the inherent dependencies among these tasks (i.e., face detection, facial landmark localization and FAC). Moreover, some methods using convolutional neural network are trained based on the fixed loss weights without considering the differences between facial attributes. In order to address the above problems, we propose a novel multi-task learning of cascaded convolutional neural network method, termed MCFA, for predicting multiple facial attributes simultaneously. Specifically, the proposed method takes advantage of three cascaded sub-networks (i.e., S_Net, M_Net and L_Net corresponding to the neural networks under different scales) to jointly train multiple tasks in a coarse-to-fine manner, which can achieve end-to-end optimization. Furthermore, the proposed method automatically assigns the loss weight to each facial attribute based on a novel dynamic weighting scheme, thus making the proposed method concentrate on predicting the more difficult facial attributes. Experimental results show that the proposed method outperforms several state-of-the-art FAC methods on the challenging CelebA and LFWA datasets.
Cutaneous melanoma (CM) is considered as the most malignant skin tumor with high distant metastasis and poor prognosis. Cell division cycle-associated protein (CDCA) family has a role in regulating cell proliferation and modulating immune cell and tumor cell proliferation in the tumor microenvironment to regulate tumor oncogenesis, development and affect patient outcomes. However, the differential expression pattern and prognostic value of CDCA factors (CDCAs) have not been clarified. In this study, the role of CDCAs in CM was analyzed by using bioinformatics and found that the transcriptional expressions of CDCA1/2/3/5/6/8 were upregulating in CM samples than in normal compares. CM patients with downregulated of CDCA1/3/4/5/6/8 and high transcriptional levels of CDCA7 suggest a significantly better prognosis.Furthermore, the significant correlations among the expression of CDCAs and the infiltration of immune cells. In terms of the protein level, we found CDCA8 was upregulated in CM patients. In conclusion, CDCA8 is a powerful prognostic biomarker for CM and can be a novel target for immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.