Docetaxel (Dtxl) is currently the most common therapeutic option for prostate cancer (PC). However, adverse side effects and problems associated with chemo-resistance limit its therapeutic outcome in clinical settings. A targeted nanoparticle system to improve its delivery to and activity at the tumor site could be an attractive strategy for PC therapy. Therefore, the objective of this study was to develop and determine the anti-cancer efficacy of a novel docetaxel loaded, prostate specific membrane antigen (PSMA) targeted superparamagnetic iron oxide nanoparticle (SPION) (J591-SPION-Dtxl) formulation for PC therapy. Our results showed the SPION-Dtxl formulation exhibits an optimal particle size and zeta potential, which can efficiently be internalized in PC cells. SPION-Dtxl exhibited potent anti-cancer efficacy via induction of the expression of apoptosis associated proteins, downregulation of anti-apoptotic proteins, and inhibition of chemo-resistance associated protein in PC cell lines. J591-SPION-Dtxl exhibited a profound uptake in C4-2 (PSMA+) cells compared to PC-3 (PSMA−) cells. A similar targeting potential was observed in ex-vivo studies in C4-2 tumors but not in PC-3 tumors, suggesting its tumor specific targeting. Overall this study suggests that a PSMA antibody functionalized SPION-Dtxl formulation can be highly useful for targeted PC therapy.
Objectives: Prostate cancer (PrCa) is the second most leading cause of cancer-related death in men in the United States. Chemotherapy (Docetaxel, Dox) is currently the most common first-line therapeutic option. However, adverse side effects and chemo-resistance of docetaxel limit its clinical use. Improving docetaxel targeted delivery and its activity at the tumor site using a targeted nanoparticle system could be an attractive strategy for PrCa therapy. Prostate Specific Membrane Antigen (PSMA) is highly overexpressed in PrCa cells, thus is a highly attractive molecular target for PrCa therapy. In this study, we developed and determined anti-cancer efficacy of a novel docetaxel loaded, PSMA targeted magnetic nanoparticle (PSMA-MNP-Dox) formulation for PrCa therapy. Methods: Docetaxel loaded magnetic nanoparticle (MNP-Dox) formulation is composed of an iron oxide core coated with cyclodextrin (for drug loading) and F127 polymer (for particle stability and chemosensitization). Therapeutic efficacy of this unique nanoparticle formulation was evaluated using clinically relevant cell line models (C4-2, PC-3, and DU-145) through cell proliferation and colony formation assays. Molecular effects of this formulation on apoptosis, anti-apotosis, and drug resistance associated proteins were evaluated using immunoblotting assays. Contrast imaging property of MNP-Dox formulation was examined using Phantom Gel MR imaging model. For active targeting, PSMA antibody conjugation to this formulation was achieved through N-hydroxysuccinimide group containing PEG polymer. Active targeting potential of this formulation was evaluated in PSMA+ (C4-2) and PSMA- (PC-3) cell lines, C4-2 generated tumor xenografts. Results: MNP-Dox formulation showed optimal particle size and zeta potential which can efficiently internalized in PrCa cells. Our formulation showed anti-cancer efficacy in prostate cancer cell lines. Additionally, it induces the expression of apoptosis associated proteins, Bax and Bad, cleaved PARP, and caspase 3, and downregulated the expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL. Moreover, it also inhibited the expression of chemoresistance associated proteins (PSMA and MDR1). Our PSMA antibody targeted MNPs-Dox formulation exhibited a profound uptake pattern in PSMA+ cells (C4-2) compared to PSMA null (PC-3)- cells, suggesting its targeting potential. A similar targeting potential was also observed in ex-vivo studies while using C4-2 tumor xenografts, however, no intense targeting was observed in normal tissues due to lack of PSMA expression. Conclusion: PSMA antibody functionalized MNP-Dox formulation can efficiently target PSMA + PrCa cells and deliver docetaxel into prostate tumors. This targeted drug delivery system could reduce the dose of docetaxel required to kill cancer cells, thus minimizing long-term docetaxel associated systemic toxicity and drug-resistance. Citation Format: Prashanth Kumar Bhusetty Nagesh, Nia Johnson, Vijaya K.N. Boya, Pallabita Chowdhury, Aditya Ganju, Bilal Hafeez, Sheema Khan, Meena Jaggi, Subhash C. Chauhan, Murali M. Yallapu. PSMA antibody functionalized docetaxel-loaded magnetic nanoparticles for prostate cancer therapy. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1312.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.