HSV triggers intracellular calcium release to promote viral entry. We hypothesized that Akt signaling induces the calcium responses and contributes to HSV entry. Exposure of human cervical and primary genital tract epithelial, neuronal, or keratinocyte cells to HSV serotype 2 resulted in rapid phosphorylation of Akt. Silencing of Akt with small interfering RNA prevented the calcium responses, blocked viral entry, and inhibited plaque formation by 90% compared to control siRNA. Susceptibility to infection was partially restored if Akt was reintroduced into silenced cells with an Akt-expressing plasmid. HSV-2 variants deleted in glycoproteins B or D failed to induce Akt phosphorylation, and coimmunoprecipitation studies indicated that Akt interacts with glycoprotein B. Cell-surface expression of Akt was rapidly induced in response to HSV exposure. Miltefosine (50 μM), a licensed drug that blocks Akt phosphorylation, inhibited HSV-induced calcium release, viral entry, and plaque formation following infection with acyclovir-sensitive and resistant clinical isolates. Miltefosine blocked amplification of HSV from explanted ganglia to epithelial cells; viral yields were significantly less in miltefosine compared to control-treated cocultures (P<0.01). Together, these findings identify a novel role for Akt in viral entry, link Akt and calcium signaling, and suggest a new target for HSV treatment and suppression.
The p53 family transcriptional factor p73 plays a pivotal role in development. Ablation of p73 results in severe neurodevelopmental defects, chronic infections, inflammation and infertility. In addition to this, Trp73 −\mice display severe alteration in the ciliated epithelial lining and the fulllength N-terminal isoform TAp73 has been implicated in the control of multiciliogenesis transcriptional program. With our recently generated Trp73 Δ13/Δ13 mouse model, we interrogate the physiological role of p73 C-terminal isoforms in vivo. Trp73 Δ13/Δ13 mice lack exon 13 in Trp73 gene, producing an ectopic switch from the C-terminal isoforms p73α to p73β. Trp73 Δ13/Δ13 mice show a pattern of expression of TAp73 comparable to the wild-type littermates, indicating that the α to β switch does not significantly alter the expression of the gene in this cell type. Moreover, Trp73 Δ13/Δ13 do not display any significant alteration in the airway ciliated epithelium, suggesting that in this context p73β can fully substitute the function of the longer isoform p73α. Similarly, Trp73 Δ13/Δ13 ciliated epithelium of the brain ependyma also does appear defective. In this district however expression of TAp73 is not detectable, indicating that expression of the gene might be compensated by alternative mechanisms. Overall our work indicates that C-terminus p73 is dispensable for the multiciliogenesis program and suggests a possible tissue-specific effect of p73 alternative splicing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.