GeneSigDB (http://www.genesigdb.org or http://compbio.dfci.harvard.edu/genesigdb/) is a database of gene signatures that have been extracted and manually curated from the published literature. It provides a standardized resource of published prognostic, diagnostic and other gene signatures of cancer and related disease to the community so they can compare the predictive power of gene signatures or use these in gene set enrichment analysis. Since GeneSigDB release 1.0, we have expanded from 575 to 3515 gene signatures, which were collected and transcribed from 1604 published articles largely focused on gene expression in cancer, stem cells, immune cells, development and lung disease. We have made substantial upgrades to the GeneSigDB website to improve accessibility and usability, including adding a tag cloud browse function, facetted navigation and a ‘basket’ feature to store genes or gene signatures of interest. Users can analyze GeneSigDB gene signatures, or upload their own gene list, to identify gene signatures with significant gene overlap and results can be viewed on a dynamic editable heatmap that can be downloaded as a publication quality image. All data in GeneSigDB can be downloaded in numerous formats including .gmt file format for gene set enrichment analysis or as a R/Bioconductor data file. GeneSigDB is available from http://www.genesigdb.org.
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the management of rheumatological disorders, and as analgesics and antipyretics. Hepatotoxicity is an uncommon, but potentially lethal complication, which usually occurs within 12 weeks of starting therapy. It can occur with all NSAIDs, but appears to be more common with diclofenac and particularly sulindac. Female patients aged >50 years, with autoimmune disease, and those on other potentially hepatotoxic drugs, appear to be particularly susceptible. Liver function test abnormalities generally settle within 4-6 weeks of stopping the causative drug. However, some patients may develop acute liver failure and successful orthotopic liver transplantation may be undertaken in such patients. Recent in vitro animal studies have shown that the mechanism of diclofenac toxicity relates both to impairment of ATP synthesis by mitochondria, and to production of active metabolites, particularly n,5-dihydroxydiclofenac, which causes direct cytotoxicity. Mitochondrial permeability transition (MPT) has also been shown to be important in diclofenac-induced liver injury, resulting in generation of reactive oxygen species, mitochondrial swelling and oxidation of NADP and protein thiols. Physicians and hepatologists must be vigilant to the hepatotoxic potential of any NSAID, as increased awareness, surveillance and reporting of these events will lead to a better understanding of the risk factors and the pathophysiology of NSAID-related hepatotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.