Carbon monoxide (CO) is a potent activator of large conductance, calcium-dependent potassium (BK Ca) channels of vascular myocytes and carotid body glomus cells or when heterologously expressed. Using the human BK Ca channel alpha1-subunit (hSlo1; KCNMA1) stably and transiently expressed in human embryonic kidney 293 cells, the mechanism and structural basis of channel activation by CO was investigated in inside-out, excised membrane patches. Activation by CO was concentration dependent (EC50 approximately 20 microM), rapid, reversible, and evoked a shift in the V 0.5 of -20 mV. CO evoked no changes in either single channel conductance or in deactivation rate but augmented channel activation rate. Activation was independent of the redox state of the channel, or associated compounds/protein partners, and was partially dependent on [Ca2+]i in the physiological range (100-1,000 nM). Importantly, CO "super-stimulated" BK Ca activity even in saturating [Ca2+]i. Single or double mutation of two histidine residues previously implicated in CO sensing did not suppress CO activation but replacing the S9-S10 module of the C-terminal of Slo1 with that of Slo3 completely prevented the action of CO. These findings show that a motif in the S9-S10 part of the C-terminal is essential for CO activation and suggest that this gas transmitter activates the BK Ca channel by redox-independent changes in gating.
We describe a case of a 69-yr-old male who developed an airway fire during elective bronchoscopy for re-canalisation of an obstructed bronchial stent. Airway fires are a rare but potentially life threatening complication of surgery in the respiratory tract. We are not aware of any previous reports of an airway fire secondary to ignition of a flexible bronchoscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.