Background The outbreak and pandemic of coronavirus SARS-CoV-2 caused significant threaten to global public health and economic consequences. It is extremely urgent that global people must take actions to develop safe and effective preventions and therapeutics. Nanobodies, which are derived from single‑chain camelid antibodies, had shown antiviral properties in various challenge viruses. In this study, multivalent nanobodies with high affinity blocking SARS-CoV-2 spike interaction with ACE2 protein were developed. Results Totally, four specific nanobodies against spike protein and its RBD domain were screened from a naïve VHH library. Among them, Nb91-hFc and Nb3-hFc demonstrated antiviral activity by neutralizing spike pseudotyped viruses in vitro. Subsequently, multivalent nanobodies were constructed to improve the neutralizing capacity. As a result, heterodimer nanobody Nb91-Nb3-hFc exhibited the strongest RBD-binding affinity and neutralizing ability against SARS-CoV-2 pseudoviruses with an IC50 value at approximately 1.54 nM. Conclusions The present study indicated that naïve VHH library could be used as a potential resource for rapid acquisition and exploitation of antiviral nanobodies. Heterodimer nanobody Nb91-Nb3-hFc may serve as a potential therapeutic agent for the treatment of COVID-19.
Background Chimeric antigen receptor (CAR) T cells and immune checkpoint blockades (ICBs) have made remarkable breakthroughs in cancer treatment, but the efficacy is still limited for solid tumors due to tumor antigen heterogeneity and the tumor immune microenvironment. The restrained treatment efficacy prompted us to seek new potential therapeutic methods. Methods In this study, we conducted a small molecule compound library screen in a human BC cell line to identify whether certain drugs contribute to CAR T cell killing. Signaling pathways of tumor cells and T cells affected by the screened drugs were predicted via RNA sequencing. Among them, the antitumor activities of JK184 in combination with CAR T cells or ICBs were evaluated in vitro and in vivo. Results We selected three small molecule drugs from a compound library, among which JK184 directly induces tumor cell apoptosis by inhibiting the Hedgehog signaling pathway, modulates B7-H3 CAR T cells to an effector memory phenotype, and promotes B7-H3 CAR T cells cytokine secretion in vitro. In addition, our data suggested that JK184 exerts antitumor activities and strongly synergizes with B7-H3 CAR T cells or ICBs in vivo. Mechanistically, JK184 enhances B7-H3 CAR T cells infiltrating in xenograft mouse models. Moreover, JK184 combined with ICB markedly reshaped the tumor immune microenvironment by increasing effector T cells infiltration and inflammation cytokine secretion, inhibiting the recruitment of MDSCs and the transition of M2-type macrophages in an immunocompetent mouse model. Conclusion These data show that JK184 may be a potential adjutant in combination with CAR T cells or ICB therapy.
Background: The outbreak and pandemic of coronavirus SARS CoV 2 caused significant threaten to global public health and economic consequences. It is extremely urgent that global people must take actions to develop safe and effective preventions and therapeutics. Nanobodies, which are derived from single‑chain camelid antibodies, had shown antiviral properties in various challenge viruses. In this study, multivalent nanobodies with high affinity blocking SARS CoV 2 spike interaction with ACE2 protein were developed.Results: Totally, four specific nanobodies against spike protein and its RBD domain were screened from a naïve VHH library. Among them, Nb91 hFc and Nb3 hFc demonstrated antiviral activity by neutralizing spike pseudotyped viruses in vitro. Subsequently, multivalent nanobodies were constructed to improve the neutralizing capacity. As a result, heterodimer nanobody Nb91 Nb3 hFc exhibited the strongest RBD binding affinity and neutralizing ability against SARS CoV 2 pseudoviruses with an IC50 value at approximately 1.54 nM. Conclusions: The present study indicated that naïve VHH library could be used as a potential resource for rapid acquisition and exploitation of antiviral nanobodies. Heterodimer nanobody Nb91 Nb3 hFc may serve as a potential therapeutic agent for the treatment of COVID 19.
BackgroundDespite advances in B7 homolog 3 protein (B7-H3) based immunotherapy, the development of drug resistance remains a major clinical concern. The heterogeneity and emerging loss of B7-H3 expression are the main causes of drug resistance and treatment failure in targeted therapies, which reveals an urgent need to elucidate the mechanism underlying the regulation of B7-H3 expression. In this study, we identified and explored the crucial role of the transcription factor SPT20 homolog (SP20H) in B7-H3 expression and tumor progression.MethodsHere, we performed CRISPR/Cas9-based genome scale loss-of-function screening to identify regulators of B7-H3 in human ovarian cancer cells. Signaling pathways altered by SP20H knockout were revealed by RNA sequencing. The regulatory role and mechanism of SP20H in B7-H3 expression were validated using loss-of-function and gain-of-function assays in vitro. The effects of inhibiting SP20H on tumor growth and efficacy of anti-B7-H3 treatment were evaluated in tumor-bearing mice.ResultsWe identified SUPT20H (SP20H) as negative and eIF4E as positive regulators of B7-H3 expression in various cancer cells. Furthermore, we provided evidence that either SP20H loss or TNF-α stimulation in tumor cells constitutively activates p38 MAPK-eIF4E signaling, thereby upregulating B7-H3 expression. Loss of SP20H upregulated B7-H3 expression both in vitro and in vivo. Additionally, deletion of SP20H significantly suppressed tumor growth and increased immune cells infiltration in tumor microenvironment. More importantly, antibody–drug conjugates targeting B7-H3 exhibited superior antitumor performance against SP20H-deficient tumors relative to control groups.ConclusionsActivation of p38 MAPK-eIF4E signaling serves as a key event in the transcription initiation and B7-H3 protein expression in tumor cells. Genetically targeting SP20H upregulates target antigen expression and sensitizes tumors to anti-B7-H3 treatment. Collectively, our findings provide new insight into the mechanisms underlying B7-H3 expression and introduce a potential synergistic target for existing antibody-based targeted therapy against B7-H3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.