The Mongolepidida is an Order of putative early chondrichthyan fish, originally erected to unite taxa from the Lower Silurian of Mongolia. The present study reassesses mongolepid systematics through the examination of the developmental, histological and morphological characteristics of scale-based specimens from the Upper Ordovician Harding Sandstone (Colorado, USA) and the Upper Llandovery–Lower Wenlock Yimugantawu (Tarim Basin, China), Xiushan (Guizhou Province, China) and Chargat (north-western Mongolia) Formations. The inclusion of the Mongolepidida within the Class Chondrichthyes is supported on the basis of a suite of scale attributes (areal odontode deposition, linear odontocomplex structure and lack of enamel, cancellous bone and hard-tissue resorption) shared with traditionally recognized chondrichthyans (euchondrichthyans, e.g., ctenacanthiforms). The mongolepid dermal skeleton exhibits a rare type of atubular dentine (lamellin) that is regarded as one of the diagnostic features of the Order within crown gnathostomes. The previously erected Mongolepididae and Shiqianolepidae families are revised, differentiated by scale-base histology and expanded to include the genera Rongolepisand Xinjiangichthys, respectively. A newly described mongolepid species (Solinalepis levis gen. et sp. nov.) from the Ordovician of North America is treated as family incertae sedis, as it possesses a type of basal bone tissue (acellular and vascular) that has yet to be documented in other mongolepids. This study extends the stratigraphic and palaeogeographic range of Mongolepidida and adds further evidence for an early diversification of the Chondrichthyes in the Ordovician Period, 50 million years prior to the first recorded appearance of euchondrichthyan teeth in the Lower Devonian.
Carbon isotope (δ13Corg) analyses of non‐marine clastic rocks and neritic carbonates and black shales spanning the Silurian/Devonian transition are compared from two richly fossiliferous sequences in Qujing of East Yunnan and Zoige of Sichuan, South China. The two sections, Xishancun and Putonggou sections in South China, reveal positive δ13Corg shifts happening in the Upper Pridoli and Lower Devonian and reaching peak values as heavy as –25.2%‰ (Xishancun) and –19.9%‰ (Putonggou) in the lowermost Lochkovian following the first occurrence of the thelodont Parathelodus and the conodont Icriodus woschmidti woschmidti (only in Putonggou Section and together with Protathyris‐Lanceomyonia brachiopod fauna). These results replicate a globally known positive shift in δ13Corg from the uppermost Silurian to the lowermost Devonian. The δ13Corg variations across the Silurian/Devonian Boundary (SDB) at the two sections in South China exhibit a shift in carbon isotopic composition similar to the detailed SDB curves from the borehole Klonk‐1 drilled at top of the Klonk Global Standard Stratotype‐Section and Point (GSSP) in the Prague Basin, Czech Republic. In addition, four microvertebrate assemblages, including the Liaojiaoshan, Xishancun, Yanglugou and Xiaputonggou assemblages, are recognized from the Silurian/Devonian transition exposed in the Xishancun and Putonggou sections, respectively. The results from both carbon isotope stratigraphy and microvertebrate assemblage sequences suggest that the SDB in South China is located at the base of the Xishancun Formation (between sample QX‐20 and sample QX‐21) in the Xishancun Section and the lower part of the Xiaputonggou Formation (between sample ZP‐09 and sample ZP‐10) in the Putonggou Section. The isotopic trend for organic carbon together with the changes of microvertebrate remains across the SDB can offer an approach to a potential correlation of the SDB from different sedimentary facies, which help to correlate the marine with non‐marine deposits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.