Type I core/shell quantum dots (QDs) have been shown to improve the stability and conversion efficiency of QD-sensitized solar cells compared to core only QDs. To understand how the shell thickness affects the solar cell performance, its effects on interfacial charge separation and recombination kinetics are investigated. These kinetics are measured in CdSe/ZnS type I core/shell QDs adsorbed with anthroquinone molecules (as electron acceptor) by time-resolved transient absorption spectroscopy. We show that the charge separation and recombination rates decrease exponentially with the shell thickness (d), k(d) = k(0)e(-βd), with exponential decay factors β of 0.35 ± 0.03 per Å and 0.91 ± 0.14 per Å, respectively. Model calculations show that these trends can be attributed to the exponential decrease of the 1S electron and hole densities at the QD surface with the shell thickness. The much steeper decrease in charge recombination rate results from a larger hole effective mass (than electron) in the ZnS shell. This finding suggests possible ways of optimizing the charge separation yield and lifetime by controlling the thickness and nature of the shell materials.
Solar-to-fuel conversion devices require not only efficient catalysts to accelerate the reactions, but also light harvesting and charge separation components to absorb multiple photons and to deliver multiple electrons/holes to the catalytic centers. In this paper, we show that the spatial distribution of electron and hole wave functions in CdSe/CdS quasi-type II quantum dots enables simultaneous ultrafast charge separation (0.18 ps to adsorbed Methylviologen), ultraslow charge recombination (0.4 μs), and slow multiple-exciton Auger annihilation (biexciton lifetime 440 ps). Up to nineteen excitons per QD can be generated by absorbing multiple 400 nm photons and all excitons can be dissociated with unity yield by electron transfer to adsorbed methylviologen molecules. Our finding demonstrates that (quasi-) type II nanoheterostructures can be engineered to efficiently dissociate multiple excitons and deliver multiple electrons to acceptors, suggesting their potential applications as light harvesting and charge separation components in artificial photosynthetic devices.
Although quantum confined nanomaterials, such as quantum dots (QDs) have emerged as a new class of light harvesting and charge separation materials for solar energy conversion, theoretical models for describing photoinduced charge transfer from these materials remains unclear. In this paper, we show that the rate of photoinduced electron transfer from QDs (CdS, CdSe and CdTe) to molecular acceptors (anthraquinone, methylviologen and methylene blue) increases at decreasing QD size (and increasing driving force), showing a lack of Marcus inverted regime behavior over an apparent driving force range of ~ 0-1.3 V. We account for this unusual driving force dependence by proposing an Auger-assisted electron transfer model, in which the transfer of the electron can be coupled to the excitation of the hole, circumventing the unfavorable Frank-Condon overlap in the Marcus inverted regime. This model is supported by computational studies of electron transfer and trapping processes in model QD-acceptor complexes.
The advancement of direct solar-to-fuel conversion technologies requires the development of efficient catalysts as well as efficient materials and novel approaches for light harvesting and charge separation. We report a novel system for unprecedentedly efficient (with near-unity quantum yield) light-driven reduction of methylviologen (MV2+), a common redox mediator, using colloidal quasi-type II CdSe/CdS dot-in-rod nanorods as a light absorber and charge separator and mercaptopropionic acid as a sacrificial electron donor. In the presence of Pt nanoparticles, this system can efficiently convert sunlight into H2, providing a versatile redox mediator-based approach for solar-to-fuel conversion. Compared to related CdSe seed and CdSe/CdS core/shell quantum dots and CdS nanorods, the quantum yields are significantly higher in the CdSe/CdS dot-in-rod structures. Comparison of charge separation, recombination and hole filling rates in these complexes showed that the dot-in-rod structure enables ultrafast electron transfer to methylviologen, fast hole removal by sacrificial electron donor and slow charge recombination, leading to the high quantum yield for MV2+ photoreduction. Our finding demonstrates that by controlling the composition, size and shape of quantum-confined nanoheterostructures, the electron and hole wave functions can be tailored to produce efficient light harvesting and charge separation materials.
The size dependence of optical and electronic properties of semiconductor quantum dots (QDs) have been extensively studied in various applications ranging from solar energy conversion to biological imaging. Core/shell QDs allow further tuning of these properties by controlling the spatial distributions of the conduction-band electron and valence-band hole wave functions through the choice of the core/shell materials and their size/thickness. It is possible to engineer type II core/shell QDs, such as CdTe/CdSe, in which the lowest energy conduction-band electron is largely localized in the shell while the lowest energy valence-band hole is localized in the core. This spatial distribution enables ultrafast electron transfer to the surface-adsorbed electron acceptors due to enhanced electron density on the shell materials, while simultaneously retarding the charge recombination process because the shell acts as a tunneling barrier for the core localized hole. Using ultrafast transient absorption spectroscopy, we show that in CdTe/CdSe-anthraquinone (AQ) complexes, after the initial ultrafast (~770 fs) intra-QD electron transfer from the CdTe core to the CdSe shell, the shell-localized electron is transferred to the adsorbed AQ with a half-life of 2.7 ps. The subsequent charge recombination from the reduced acceptor, AQ(-), to the hole in the CdTe core has a half-life of 92 ns. Compared to CdSe-AQ complexes, the type II band alignment in CdTe/CdSe QDs maintains similar ultrafast charge separation while retarding the charge recombination by 100-fold. This unique ultrafast charge separation and slow recombination property, coupled with longer single and multiple exciton lifetimes in type II QDs, suggests that they are ideal light-harvesting materials for solar energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.