Single-heading tunnels in underground metal mines have high air pollutant concentrations, chaotic airflow, and low pollutant diffusion efficiency in high-altitude areas, resulting in poor air exchange. Based on Pulang copper mine (China), a computational fluid dynamics case using the steady Reynolds-averaged Navier–Stokes equations with a k-omega turbulence model was developed to study certain factors influencing the air exchange of single-heading tunnels, and was combined with an orthogonal experimental method to simulate the mean age of air (MAA) under different working conditions. This study revealed the ranking of the importance of some factors on the air exchange via sensitivity analysis. The MAA generally increases with the increasing distance between the duct and the heading face and the increasing diameter of the oxygen supply duct. This study’s optimal distance and diameter can reduce MAA by 14.7% and 9.9%, respectively. Placing the oxygen supply duct and the duct on the same side and using an 800/1000 mm inner diameter duct can effectively reduce the MAA by 6.7% and 4.2%, respectively, in this study. The findings of this study can optimize air exchange in the Pulang copper mine, and can also be referenced for the optimization of air exchange in high-altitude highway or railway tunnels being excavated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.