Four examples of laterally coupled semiconductor lasers with different waveguiding structures have been studied using coupled mode theory and allowing for frequency detuning between the lasers. The structures include purely real index guiding, pure gain-guiding, and combinations of index guiding and antiguiding with gain-guiding. The dynamics of these four systems have been explored using AUTO software (standard numerical continuation package), linear stability analysis, and direct integration of the rate equations. Convincing agreement between results obtained by these three methods has been demonstrated, including effects due to variation of laser pumping rate, detuning, and linewidth enhancement factor. A periodicity of behavior with laser separation has been revealed that was previously overlooked. This periodicity has increasing influence on the bifurcations of the system as the structures develop from those with purely real guidance to a combination of index antiguiding and gain-guiding. The laser design and operating parameters used are realistic for a wide range of edge-emitting and surface-emitting lasers of practical importance, so that the dynamics studied here are relevant to real systems of coupled lasers.
This paper reports the experimental investigation of two different approaches to random bit generation based on the chaotic dynamics of a semiconductor laser with optical feedback. By computing high-order finite differences of the chaotic laser intensity time series, we obtain time series with symmetric statistical distributions that are more conducive to ultrafast random bit generation. The first approach is guided by information-theoretic considerations and could potentially reach random bit generation rates as high as 160 Gb/s by extracting 4 bits per sample. The second approach is based on pragmatic considerations and could lead to rates of 2.2 Tb/s by extracting 55 bits per sample. The randomness of the bit sequences obtained from the two approaches is tested against three standard randomness tests (ENT, Diehard, and NIST tests), as well as by calculating the statistical bias and the serial correlation coefficients on longer sequences of random bits than those used in the standard tests.
We report on a master and slave configuration consisting of two optically pumped spin-vertical-cavity surface-emitting lasers for chaos synchronization and secure communication. Under appropriate conditions, high-quality chaos synchronization is achieved. We propose two encryption schemes, where either the pump magnitude or polarization is modulated. The results show that these allow for Gb/s transmission of secure data, but exhibit different features: one indicates that the message can be recovered by the total intensity, but not the polarization components, whereas the other shows that the message can be better or exclusively retrieved from the polarization components at high bit rates.
This Letter is the first to report experimental bifurcation diagrams of an external-cavity semiconductor laser (ECSL) in the low-to-moderate current injection regime and long-cavity case. Based on the bifurcation cascade behavior which was unveiled by Hohl and Gavrielides [Phys. Rev. Lett. 82, 1148-1151 (1999)], we present a detailed experimental investigation of the nonlinear dynamics of ECSLs and of the robustness of the cascade to changes in the current and cavity length. Also, we report for the first time a well resolved experimental Hopf bifurcation in an ECSL. Based on the Lang and Kobayashi model, we identify the dynamical regimes and the instabilities involved in the cascade, as well as the influence of the current and cavity length on the cascade.
We study experimentally and theoretically the first- and second-order statistics of the optical intensity of a chaotic external-cavity semiconductor DFB laser in fully developed coherence-collapse. The second-order statistic is characterized by the autocorrelation, where we achieve consistent experimental and theoretical results over the entire parameter range considered. For the first-order statistic, we find that the experimental probability-density function is significantly more concentrated around the mean optical power and robust to parameter changes than theory predicts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.