Background: Inflammation is a potential crucial factor in the pathogenesis of subarachnoid hemorrhage (SAH). Circulating microRNAs (miRNAs) are involved in the regulation of diverse aspects of neuronal dysfunction. The therapeutic potential of miRNAs has been demonstrated in several CNS disorders and is thought to involve modulation of neuroinflammation. Here, we found that peripherally injected modified exosomes (Exos) delivered miRNAs to the brains of mice with SAH and that the potential mechanism was regulated by regulation of neuroinflammation. Methods: Next-generation sequencing (NGS) and qRT-PCR were used to define the global miRNA profile of plasma exosomes in aSAH patients and healthy controls. We peripherally injected RVG/Exos/miR-193b-3p to achieve delivery of miR-193b-3p to the brain of mice with SAH. The effects of miR-193b-3p on SAH were assayed using a neurological score, brain water content, blood-brain barrier (BBB) injury, and Fluoro-Jade C (FJC) staining. Western blotting analysis, enzyme-linked immunosorbent assay (ELISA), and qRT-PCR were used to measure various proteins and mRNA levels. Results: NGS and qRT-PCR revealed that four circulating exosomal miRNAs were differentially expressed. RVG/Exos exhibited improved targeting to the brains of SAH mice. MiR-193b-3p suppressed the expression and activity of HDAC3, upregulating the acetylation of NF-κB p65. Finally, miR-193b-3p treatment mitigated the neurological behavioral impairment, brain edema, BBB injury, and neurodegeneration induced by SAH, and reduced inflammatory cytokine expression in the brains of mice after SAH. Conclusions: Exos/miR-193b-3p treatment attenuated the inflammatory response by acetylation of the NF-κB p65 via suppressed expression and activity of HDAC3. These effects alleviated neurobehavioral impairments and neuroinflammation following SAH.
Mounting evidence has suggested that modulating microglia polarization from pro-inflammatory M1 phenotype to anti-inflammatory M2 state might be a potential therapeutic approach in the treatment of subarachnoid hemorrhage (SAH) injury. Our previous study has indicated that sirtuin 1 (SIRT1) could ameliorate early brain injury (EBI) in SAH by reducing oxidative damage and neuroinflammation. However, the effects of SIRT1 on microglial polarization and the underlying molecular mechanisms after SAH have not been fully illustrated. In the present study, we first observed that EX527, a potent selective SIRT1 inhibitor, enhanced microglial M1 polarization and nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation in microglia after SAH. Administration of SRT1720, an agonist of SIRT1, significantly enhanced SIRT1 expression, improved functional recovery, and ameliorated brain edema and neuronal death after SAH. Moreover, SRT1720 modulated the microglia polarization shift from the M1 phenotype and skewed toward the M2 phenotype. Additionally, SRT1720 significantly decreased acetylation of forkhead box protein O1, inhibited the overproduction of reactive oxygen species (ROS) and suppressed NLRP3 inflammasome signaling. In contrast, EX527 abated the upregulation of SIRT1 and reversed the inhibitory effects of SRT1720 on ROS-NLRP3 inflammasome activation and EBI. Similarly, in vitro, SRT1720 suppressed inflammatory response, oxidative damage, and neuronal degeneration, and improved cell viability in neurons and microglia co-culture system. These effects were associated with the suppression of ROS-NLRP3 inflammasome and stimulation of SIRT1 signaling, which could be abated by EX527. Altogether, these findings indicate that SRT1720, an SIRT1 agonist, can ameliorate EBI after SAH by shifting the microglial phenotype toward M2 via modulation of ROS-mediated NLRP3 inflammasome signaling.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.