The splitting of water photoelectrochemically into hydrogen and oxygen represents a promising technology for converting solar energy to fuel. The main challenge is to ensure that photogenerated holes efficiently oxidize water, which generally requires modification of the photoanode with an oxygen evolution catalyst (OEC) to increase the photocurrent and reduce the onset potential. However, because excess OEC material can hinder light absorption and decrease photoanode performance, its deposition needs to be carefully controlled--yet it is unclear which semiconductor surface sites give optimal improvement if targeted for OEC deposition, and whether sites catalysing water oxidation also contribute to competing charge-carrier recombination with photogenerated electrons. Surface heterogeneity exacerbates these uncertainties, especially for nanostructured photoanodes benefiting from small charge-carrier transport distances. Here we use super-resolution imaging, operated in a charge-carrier-selective manner and with a spatiotemporal resolution of approximately 30 nanometres and 15 milliseconds, to map both the electron- and hole-driven photoelectrocatalytic activities on single titanium oxide nanorods. We then map, with sub-particle resolution (about 390 nanometres), the photocurrent associated with water oxidation, and find that the most active sites for water oxidation are also the most important sites for charge-carrier recombination. Site-selective deposition of an OEC, guided by the activity maps, improves the overall performance of a given nanorod--even though more improvement in photocurrent efficiency correlates with less reduction in onset potential (and vice versa) at the sub-particle level. Moreover, the optimal catalyst deposition sites for photocurrent enhancement are the lower-activity sites, and for onset potential reduction the optimal sites are the sites with more positive onset potential, contrary to what is obtainable under typical deposition conditions. These findings allow us to suggest an activity-based strategy for rationally engineering catalyst-improved photoelectrodes, which should be widely applicable because our measurements can be performed for many different semiconductor and catalyst materials.
This review discusses the latest advances in using single-molecule microscopy of fluorogenic reactions to examine and understand the spatiotemporal catalytic behaviors of single metal nanoparticles of various shapes including pseudospheres, nanorods, and nanoplates. Real-time single-turnover kinetics reveal size-, catalysis-, and metal-dependent temporal activity fluctuations of single pseudospherical nanoparticles (<20 nm in diameter). These temporal catalytic dynamics can be related to nanoparticles' dynamic surface restructuring whose timescales and energetics can be quantified. Single-molecule super-resolution catalysis imaging further enables the direct quantification of catalytic activities at different surface sites (i.e., ends vs. sides, or corner, edge vs. facet regions) on single pseudo 1-D and 2-D nanocrystals, and uncovers linear and radial activity gradients within the same surface facets. These spatial activity patterns within single nanocrystals can be attributed to the inhomogeneous distributions of low-coordination surface sites, including corner, edge, and defect sites, among which the distribution of defect sites is correlated with the nanocrystals' morphology and growth mechanisms. A brief discussion is given on the extension of the single-molecule imaging approach to catalysis that does not involve fluorescent molecules.
Enzymes often show catalytic allostery in which reactions occurring at different sites communicate cooperatively over distances of up to a few nanometres. Whether such effects can occur with non-biological nanocatalysts remains unclear, even though these nanocatalysts can undergo restructuring and molecules can diffuse over catalyst surfaces. Here we report that phenomenologically similar, but mechanistically distinct, cooperative effects indeed exist for nanocatalysts. Using spatiotemporally resolved single-molecule catalysis imaging, we find that catalytic reactions on a single Pd or Au nanocatalyst can communicate with each other, probably via hopping of positively charged holes on the catalyst surface, over ~10 nanometres and with a temporal memory of ~10 to 10 seconds, giving rise to positive cooperativity among its surface active sites. Similar communication is also observed between individual nanocatalysts, however it operates via a molecular diffusion mechanism involving negatively charged product molecules, and its communication distance is many micrometres. Generalization of these long-range intra- and interparticle catalytic communication mechanisms may introduce a novel conceptual framework for understanding nanoscale catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.