Sterol-binding proteins are important regulators of lipid homeostasis and membrane integrity; however, the discovery of selective small molecule modulators can be challenging due to structural similarities in the sterol binding domains. We report the discovery of highly potent and selective inhibitors of oxysterol binding protein (OSBP), which we term oxybipins. Sterol-containing chemical chimeras aimed at identifying new sterol binding proteins by targeted degradation, led to a significant reduction in Golgi-associated proteins. The degradation was found to occur at lysosomes, concomitant with changes in general protein glycosylation, indicating that the degradation of Golgi proteins was a downstream effect. By establishing a sterol transport protein biophysical assay panel, we discovered that the oxybipins potently inhibited OSBP, resulting in blockage of retrograde trafficking and attenuating Shiga toxin toxicity. As the oxybipins do not target any other sterol transporters tested, we advocate their use as chemical tools to study OSBP function and therapeutic relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.