BackgroundCarbapenem-resistant Acinetobacter baumannii poses a significant threat to hospitalized patients, as few therapeutic options remain. Thus, we investigated the molecular epidemiology and mechanism of resistance of carbapenem-resistant A.baumannii isolates in Beijing, China.MethodsCarbapenem-resistant A.baumannii isolates (n = 101) obtained between June 2009 and November 2014 were used. Multilocus sequence typing (MLST) and PCR assays for class C and D β-lactamase were performed on all isolates. S1 nuclease pulsed-field gel electrophoresis (PFGE) and Southern blot hybridization were performed to identify the resistance gene location.ResultsAll 101 A.baumannii isolates were highly resistant to frequently used antimicrobials, and were considered multidrug resistant. A total of 12 sequence types (STs) were identified, including 10 reported STs and 2 novel STs. Eighty-seven isolates were classified to clonal complex 92 (CC92), among which ST191 and ST195 were the most common STs. The bla OXA-23 gene was positive in most (n = 95) of the A.baumannii isolates. Using S1-nuclease digestion PFGE and Southern blot hybridization, 3 patterns of plasmids carrying bla OXA-23 were confirmed. ST191 and ST195 (both harboring bla OXA-23) caused outbreaks during the study period, and this is the first report of outbreaks caused by ST191 and ST195 in north China.Conclusion bla OXA-23-producing A.baumannii ST191 and ST 195 isolates can disseminate in a hospital and are potential nosocomial outbreak strains. Surveillance of imipenem-resistant A.baumannii and antimicrobial stewardship should be strengthened.
BackgroundSpontaneous bacterial peritonitis (SBP) and bacterascites (BA) represent frequent and serious complications in cirrhosis patients with ascites. However, few detailed data are available regarding the clinical and bacteriological feature of SBP or BA patients in China.MethodsWe retrospectively analyzed bacteriological and clinical characteristics of patients with SBP and BA at Beijing 302 Hospital in China from January 2012 to December 2015.ResultsA total of 600 patients with SBP (n = 408) or BA (n = 192) were enrolled. Patients with BA appeared to have a less severe clinical manifestation and lower mortality rate than patients with SBP. Gram-negative bacteria formed the majority of pathogens in SBP (73.9%) and BA (55.8%) cases. Higher ascitic fluid polymorphonuclear leucocytes (PMN) count and hepatocellular carcinoma were independent risk factors for BA episode progressing to SBP. The concentration of blood urea nitrogen (BUN) was independent risk factor for 30-day mortality of BA patients. For patients with SBP, the independent risk factors for 30-day mortality were age, Model for End-Stage Liver Disease (MELD) score, septic shock and hepatocellular carcinoma. Patients with third-generation cephalosporin or carbapenems resistant infection had a significantly lower survival probability. There were significant differences in clinical characteristics and outcome among the major bacteria. Multivariate analysis showed that patients infected with Klebsiella spp. had higher hazard ratio of 30-day mortality.ConclusionOur study reported the bacteriological and clinical characteristics of patients with SBP and BA. Higher ascitic fluid PMN count and hepatocellular carcinoma were found to be independent risk factors for BA episode progressed to SBP. Outcome of ascitic fluid infection in patients with cirrhosis was influenced by the type of bacteria and antimicrobial susceptibility.Electronic supplementary materialThe online version of this article (10.1186/s12879-018-3101-1) contains supplementary material, which is available to authorized users.
COVID-19 is a severe disease in humans, as highlighted by the current global pandemic. Several studies about the metabolome of COVID-19 patients have revealed metabolic disorders and some potential diagnostic markers during disease progression. However, the longitudinal changes of metabolomics in COVID-19 patients, especially their association with disease progression, are still unclear. Here, we systematically analyzed the dynamic changes of the serum metabolome of COVID-19 patients, demonstrating that most of the metabolites did not recover by 1–3 days before discharge. A prominent signature in COVID-19 patients comprised metabolites of amino acids, peptides, and analogs, involving nine essential amino acids, 10 dipeptides, and four N-acetylated amino acids. The levels of 12 metabolites in amino acid metabolism, especially three metabolites of the ornithine cycle, were significantly higher in severe patients than in mild ones, mainly on days 1–3 or 4–6 since onset. Integrating blood metabolomic, biochemical, and cytokine data, we uncovered a highly correlated network, including 6 cytokines, 13 biochemical parameters, and 49 metabolites. Significantly, five ornithine cycle-related metabolites (ornithine, N-acetylornithine, 3-amino-2-piperidone, aspartic acid, and asparagine) highly correlated with “cytokine storms” and coagulation index. We discovered that the ornithine cycle dysregulation significantly correlated with inflammation and coagulation in severe patients, which may be a potential mechanism of COVID-19 pathogenicity. Our study provided a valuable resource for detailed exploration of metabolic factors in COVID-19 patients, guiding metabolic recovery, understanding the pathogenic mechanisms, and creating drugs against SARS-CoV-2 infection.
Involvement of gut microbiota in pulmonary disease by the gut-lung axis has been widely observed. However, the cross-talk messengers between respiratory mucosal immunity and gut microbiota are largely unknown. Using selective pharmacologic destruction of gut microenvironment mouse models, we found gut microbiota displayed significantly lower alpha diversity and relative abundance of bacteria in Gentamicin treated mice. Metagenomic studies revealed functional differences in gut bacteria in altering metabolic profiles in mice blood. Branched-chain amino acids (BCAAs) are the essential factors linked between gut and lung. During this process, selective destruction of gut microbiota by Gentamicin induced high levels of BCAAs, and the high levels of BCAAs impacted the lung immunity against influenza virus. In vivo, Gentamicin-treated mice or mice fed with high BCAAs diets displayed reduced survival. At the sites of infection, the number of CD11b+Ly6G+ cells decreased, and CD8+ T cells increased accompanied by exuberant expression of pro-inflammatory cytokines could result in tissue damage. CD11b+Ly6G+ cells transplantation conferred remarkable protection from influenza virus infections. In vitro, BCAAs promoted bone marrow-derived cells differentiation to dendritic cells. Taken together, these findings demonstrate that Gentamicin induced disruption of the gut microbiota leads to increased BCAA levels that suppress CD11b+Ly6c+ cell development in association with overactive CD8+ T responses which may contribute to enhanced severity of the viral infection.
The emergence and spread of carbapenemase in Gram-negative pathogens poses an enormous threat to global public health. New Delhi metallo-β-lactamase-1 (NDM-1) inactivates nearly every class of β-lactam antibiotics, including carbapenem; however, there is no clinically useful NDM-1 inhibitor. Embelin, an important ingredient in traditional herbal medicine, has anti-tumor effects. The current study is the first to discover and examine the inhibitory activity of embelin against β-lactamase NDM-1. The IC50 of embelin was 2.1 ± 0.2 μM when tested against NDM-1 carbapenemase. Most regions of the embelin molecule were buried within NDM-1’s active site, and the hydroxyl group of embelin interacted directly with the metal ion Zn2+, as shown by molecular dynamic simulation. Systematic analysis of the antibacterial activities of embelin and antibiotics demonstrated that embelin restored meropenem activity against a panel of NDM-positive pathogens, such as Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Based on these results, embelin could be a promising carbapenem adjuvant candidate against NDM-1-producing bacterial strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.