Improving the impact energy dissipation capacity of functionally graded brittle materials through pore design will help avoid or delay failure. In order to improve the impact energy dissipation capacity of functionally graded brittle materials, pores with specific shapes can be implanted inside them. The effect of pore shape on the impact properties of functionally graded brittle materials was investigated using a lattice-spring model that can quantitatively represent the mechanical properties of functionally graded brittle materials. The calculated results show that the pores with negative Poisson’s ratio such as inner-concave triangle, fourth-order star, and inner-concave hexagon are easy to collapse under the impact, while the square and square-hexagon pores have the strongest resistance to deformation. For all seven pore shapes, the Hugoniot elastic limit of the samples decreased gradually with increasing porosity, and the Hugoniot elastic limit did not change with the change of piston velocity. The propagation velocity of the deformation wave increases with the piston velocity and the velocity of the particle corresponding to the Hugoniot state behind the deformation wave increases accordingly. The principle that pores can enhance the macroscopic impact energy dissipation capacity of functionally graded brittle material samples revealed in this paper will contribute to the prevention of sample impact failure and provide guidance for the optimal design of impact kinetic properties of samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.