Background: Brain-Computer Interface (BCI) is becoming more reliable, thanks to the advantages of Artificial Intelligence (AI). Recently, hybrid Deep Learning (hDL), which combines different DL algorithms, has gained momentum over the past five years. In this work, we proposed a review on hDL-based BCI starting from the seminal studies in 2015. Objectives: We have reviewed 47 papers that apply hDL to the BCI system published between 2015 and 2020 extracting trends and highlighting relevant aspects to the topic. Methods: We have queried four scientific search engines (Google Scholar, PubMed, IEEE Xplore and Elsevier Science Direct) and different data items were extracted from each paper such as the database used, kind of application, online/offline training, tasks used for the BCI, pre-processing methodology adopted, type of normalization used, which kind of features were extracted, type of DL architecture used, number of layers implemented and which optimization approach were used as well. All these items were then investigated one by one to uncover trends. Results: Our investigation reveals that Electroencephalography (EEG) has been the most used technique. Interestingly, despite the lower Signal-to-Noise Ratio (SNR) of the EEG data that makes pre-processing of that data mandatory, we have found that the pre-processing has only been used in 21.28% of the cases by showing that hDL seems to be able to overcome this intrinsic drawback of the EEG data. Temporal-features seem to be the most effective with 93.94% accuracy, while spatial-temporal features are the most used with 33.33% of the cases investigated. The most used architecture has been Convolutional Neural Network-Recurrent Neural Network CNN-RNN with 47% of the cases. Moreover, half of the studies have used a low number of layers to achieve a good compromise between the complexity of the network and computational efficiency. Significance: To give useful information to the scientific community, we make our summary table of hDL-based BCI papers available and invite the community to published work to contribute to it directly. We have indicated a list of open challenges, emphasizing the need to use neuroimaging techniques other than EEG, such as functional Near-Infrared Spectroscopy (fNIRS), deeper investigate the advantages and disadvantages of using pre-processing and the relationship with the accuracy obtained. To implement new combinations of architectures, such as RNN-based and Deep Belief Network DBN-based, it is necessary to better explore the frequency and temporal-frequency features of the data at hand.
Opposed to standard authentication methods based on credentials, biometric-based authentication has lately emerged as a viable paradigm for attaining rapid and secure authentication of users. Among the numerous categories of biometric traits, electroencephalogram (EEG)-based biometrics is recognized as a promising method owing to its unique characteristics. This paper provides an experimental evaluation of the effect of auditory stimuli (AS) on EEG-based biometrics by studying the following features: i) general change in AS-aided EEG-based biometric authentication in comparison with non-AS-aided EEG-based biometric authentication, ii) role of the language of the AS and ii) influence of the conduction method of the AS. Our results show that the presence of an AS can improve authentication performance by 9.27%. Additionally, the performance achieved with an in-ear AS is better than that obtained using a bone-conducting AS. Finally, we verify that performance is independent of the language of the AS. The results of this work provide a step forward towards designing a robust EEG-based authentication system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.