The goal of out-of-distribution (OOD) detection is to handle the situations where the test samples are drawn from a different distribution than the training data. In this paper, we argue that OOD samples can be detected more easily if the training data is embedded into a low-dimensional space, such that the embedded training samples lie on a union of 1-dimensional subspaces. We show that such embedding of the in-distribution (ID) samples provides us with two main advantages. First, due to compact representation in the feature space, OOD samples are less likely to occupy the same region as the known classes. Second, the first singular vector of ID samples belonging to a 1-dimensional subspace can be used as their robust representative. Motivated by these observations, we train a deep neural network such that the ID samples are embedded onto a union of 1-dimensional subspaces. At the test time, employing sampling techniques used for approximate Bayesian inference in deep learning, input samples are detected as OOD if they occupy the region corresponding to the ID samples with probability 0. Spectral components of the ID samples are used as robust representative of this region. Our method does not have any hyperparameter to be tuned using extra information and it can be applied on different modalities with minimal change. The effectiveness of the proposed method is demonstrated on different benchmark datasets, both in the image and video classification domains.
Crowd surveillance plays a key role to ensure safety and security in public areas. Surveillance systems traditionally rely on fixed camera networks, which suffer from limitations, as coverage of the monitored area, video resolution and analytic performance. On the other hand, a smart camera network provides the ability to reconfigure the sensing infrastructure by incorporating active devices such as pan-tilt-zoom (PTZ) cameras and UAV-based cameras, thus enabling the network to adapt over time to changes in the scene. We propose a new decentralised approach for network reconfiguration, where each camera dynamically adapts its parameters and position to optimise scene coverage. Two policies for decentralised camera reconfiguration are presented: a greedy approach and a reinforcement learning approach. In both cases, cameras are able to locally control the state of their neighbourhood and dynamically adjust their position and PTZ parameters. When crowds are present, the network balances between global coverage of the entire scene and high resolution for the crowded areas. We evaluate our approach in a simulated environment monitored with fixed, PTZ and UAV-based cameras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.