Over the last two decades, it has
been demonstrated that size effects have significant consequences
for the atomic arrangements and phase behavior of matter under extreme
pressure. Furthermore, it has been shown that an understanding of
how size affects critical pressure–temperature conditions provides
vital guidance in the search for materials with novel properties.
Here, we report on the remarkable behavior of small (under ∼5
nm) matrix-free Ge nanoparticles under hydrostatic compression that
is drastically different from both larger nanoparticles and bulk Ge.
We discover that the application of pressure drives surface-induced
amorphization leading to Ge–Ge bond overcompression and eventually
to a polyamorphic semiconductor-to-metal transformation. A combination
of spectroscopic techniques together with ab initio simulations were
employed to reveal the details of the transformation mechanism into
a new high density phaseamorphous metallic Ge.
Understanding the effects of pressure-induced deformations on the optoelectronic properties of nanomaterials is important not only from the fundamental point of view but also for potential applications such as stress sensors and electromechanical devices. Here, we describe the novel insights into these piezochromic effects gained from using a linear-scaling density functional theory framework and an electronic enthalpy scheme, which allow us to accurately characterize the electronic structure of CdS nanocrystals with a zincblende-like core of experimentally relevant size. In particular, we focus on unravelling the complex interplay of size and surface (phenyl) ligands with pressure. We show that pressure-induced deformations are not simple isotropic scaling of the original structures and that the change in HOMO-LUMO gap with pressure results from two competing factors: (i) a bulk-like linear increase due to compression, which is offset by (ii) distortions and disorder and, to a lesser extent, orbital hybridization induced by ligands affecting the frontier orbitals. Moreover, we observe that the main peak in the optical absorption spectra is systematically red-shifted or blue-shifted, as pressure is increased up to 5 GPa, depending on the presence or absence of phenyl ligands. These heavily hybridize the frontier orbitals, causing a reduction in overlap and oscillator strength, so that at zero pressure, the lowest energy transition involves deeper hole orbitals than in the case of hydrogen-capped nanocrystals; the application of pressure induces greater delocalization over the whole nanocrystals bringing the frontier hole orbitals into play and resulting in an unexpected red shift for the phenyl-capped nanocrystals, in part caused by distortions. In response to a growing interest in relatively small nanocrystals that can be difficult to accurately characterize with experimental techniques, this work exemplifies the detailed understanding of structure-property relationships under pressure that can be obtained for realistic nanocrystals with state-of-the-art first-principles methods and used for the characterization and design of devices based on these and similar nanomaterials.
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.