The letter presents a force-tracking impedance controller granting a free-overshoots contact force (mandatory performance for many critical interaction tasks such as polishing) for partially unknown interacting environments (such as leather or hard-fragile materials). As in many applications, the robot has to gently approach the target environment (whose position is usually not well-known), then execute the interaction task. Therefore, the algorithm has been designed to deal with both the free space approaching motion (phase a.) and the succeeding contact task (phase b.) without switching from different control logics. Control gains have to be properly calculated for each phase in order to achieve the target force tracking performance (i.e., free-overshoots contact force). In detail, phase a. control gains are optimized based on the impact collision model to minimize the force error during the following contact task, while phase b. control gains are analytically calculated based on the solution of the LQR optimal control problem. The analytical solution grants the continuous adaptation of the control gains during the contact phase on the estimated value of the environment stiffness (obtained through an on-line extended Kalman filter). A probing task has been carried out to validate the performance of the control with partially unknown contact environment properties. Results show the avoidance of force overshoots and instabilities
Smart factories must speed up their processes to face new manufacturing challenges and, at the same time, demonstrate an extremely high degree of flexibility to reduce production costs and time. This kind of issues can be addressed by the cooperation between humans and robots in a mixed human-robot working environment. Robots have the compelling advantage of spatial precision and repeatability as well as the capability of applying defined forces. Humans, on the other hand, are especially skilled at complex manipulations and adapting to changing task requirements. In this complicate scenario of co-shared workplace and continuous human-robot interaction, safety strategies are a key requirement to avoid possible injuries to humans or fatal accidents. This chapter proposes a systemic approach to respond to these requirements. The approach merges and manages multiple sensing sources, redundant transmission protocols and software decision mechanisms, aiming to guarantee a continuous and reconfigurable co-share scenario that enables an operative interaction between human workers and robots in a controlled and safe environment. Furthermore, new technological solutions and innovative methodologies are presented for the definition of a safer workplace in human-robot interaction scenarios. 8.1 Scientific and Industrial Motivations The need to face the production of complex families of product, with short life cycles, often characterized by strongly variable production patterns, requires factories to be able to quickly evolve and reconfigure [1]. These reconfigurable factories
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.