Herbicide resistance is a major weed control issue that threatens the sustainability of rice cropping systems. Its epidemiology at large scale is largely unknown. Several rice weed species have evolved resistant populations in Italy, including multiple resistant ones. The study objectives were to analyze the impact in Italian rice fields of major agronomic factors on the epidemiology of herbicide resistance and to generate a large-scale resistance risk map. The Italian Herbicide Resistance Working Group database was used to generate herbicide resistance maps. The distribution of resistant weed populations resulted as not homogeneous in the area studied, with two pockets where resistance had not been detected. To verify the situation, random sampling was done in the pockets where resistance had never been reported. Based on data from 230 Italian municipalities, three different statistics, stepwise discriminant analysis, stepwise logistic regression, and neural network, were used to correlate resistance distribution in the main Italian rice growing area with seeding type, rotation rate, and soil texture. Through the integration of complaint monitoring, mapping, and neural network analyses, we prove that a high risk of resistance evolution is associated with traditional rice cropping systems with intense monoculture rates and where water-seeding is widespread. This is the first study that determines the degree of association between herbicide resistance and a few important predictors at large scale. It also demonstrates that resistance is present in areas where it had never been reported through extensive complaint monitoring. However, these resistant populations cause medium-low density infestations, likely not alarming rice farmers. This highlights the importance of integrated agronomic techniques at cropping system level to prevent the diffusion and impact of herbicide resistance or limit it to an acceptable level. The identification of concise, yet informative, agronomic predictors of herbicide resistance diffusion can significantly facilitate effective management and improve sustainability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.