Soft robots offer a number of advantages over traditional rigid robots in applications such as minimally invasive surgery, where safety and dexterity are required. In previous works, the STIFF-FLOP manipulator has been introduced as a new concept of using soft materials to develop endoscopic tools with high dexterity and intrinsic safety. However, due to its inherent low stiffness, the ability to generate higher forces and stability when required remains to be further explored. In the state-of-the-art technology, there is no optimal solution that satisfies all the desired requirements in terms of miniaturized dimensions, free lumen for passing tools up to the tip, stiffness variation, and dexterity. In this paper, we compare different variable stiffness technologies and present a novel design that comprises a stiffening system based either on a fiber jamming (FJ) transition or low-melting-point alloys (LMPAs) that can be embedded in the manipulator to widen its applicability by increasing its stability and load bearing capability. The two approaches have been evaluated and compared in terms of variable stiffness capability and dexterity. The results suggest that the LMPA-based solution significantly outperforms previous approaches using similar designs with a higher stiffness variation combined with a good degree of flexibility, while the solution based on FJ guarantees fast transition times and fully satisfies the required safety measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.