The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we show that A- and B-type nuclear lamin isoforms distinctively modulate both nuclear and cellular volume and selectively stabilize the linker of nucleoskeleton and cytoskeleton (LINC) complexes that couple the nucleus to cytoskeletal actin and vimentin. We reveal, further, that loss of each of the four-known lamin isoforms in the mouse embryonic fibroblasts differentially affects cortical and cytoplasmic stiffness as well as cellular contractility, and then propose a LINC complex mediated model that explains these impaired mechanical phenotypes. Finally, we demonstrate that loss of each lamin isoform softens the nucleus in a manner that correlates with loss of heterochromatin. Together, these findings uncover distinctive roles for each lamin isoform in maintaining cellular and nuclear mechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.