ObjectivesUse electronic health records Autism Spectrum Disorder (ASD) to assess the comorbidity burden of ASD in children and young adults.Study DesignA retrospective prevalence study was performed using a distributed query system across three general hospitals and one pediatric hospital. Over 14,000 individuals under age 35 with ASD were characterized by their co-morbidities and conversely, the prevalence of ASD within these comorbidities was measured. The comorbidity prevalence of the younger (Age<18 years) and older (Age 18–34 years) individuals with ASD was compared.Results19.44% of ASD patients had epilepsy as compared to 2.19% in the overall hospital population (95% confidence interval for difference in percentages 13.58–14.69%), 2.43% of ASD with schizophrenia vs. 0.24% in the hospital population (95% CI 1.89–2.39%), inflammatory bowel disease (IBD) 0.83% vs. 0.54% (95% CI 0.13–0.43%), bowel disorders (without IBD) 11.74% vs. 4.5% (95% CI 5.72–6.68%), CNS/cranial anomalies 12.45% vs. 1.19% (95% CI 9.41–10.38%), diabetes mellitus type I (DM1) 0.79% vs. 0.34% (95% CI 0.3–0.6%), muscular dystrophy 0.47% vs 0.05% (95% CI 0.26–0.49%), sleep disorders 1.12% vs. 0.14% (95% CI 0.79–1.14%). Autoimmune disorders (excluding DM1 and IBD) were not significantly different at 0.67% vs. 0.68% (95% CI −0.14-0.13%). Three of the studied comorbidities increased significantly when comparing ages 0–17 vs 18–34 with p<0.001: Schizophrenia (1.43% vs. 8.76%), diabetes mellitus type I (0.67% vs. 2.08%), IBD (0.68% vs. 1.99%) whereas sleeping disorders, bowel disorders (without IBD) and epilepsy did not change significantly.ConclusionsThe comorbidities of ASD encompass disease states that are significantly overrepresented in ASD with respect to even the patient populations of tertiary health centers. This burden of comorbidities goes well beyond those routinely managed in developmental medicine centers and requires broad multidisciplinary management that payors and providers will have to plan for.
Results of medical research studies are often contradictory or cannot be reproduced. One reason is that there may not be enough patient subjects available for observation for a long enough time period. Another reason is that patient populations may vary considerably with respect to geographic and demographic boundaries thus limiting how broadly the results apply. Even when similar patient populations are pooled together from multiple locations, differences in medical treatment and record systems can limit which outcome measures can be commonly analyzed. In total, these differences in medical research settings can lead to differing conclusions or can even prevent some studies from starting. We thus sought to create a patient research system that could aggregate as many patient observations as possible from a large number of hospitals in a uniform way. We call this system the ‘Shared Health Research Information Network’, with the following properties: (1) reuse electronic health data from everyday clinical care for research purposes, (2) respect patient privacy and hospital autonomy, (3) aggregate patient populations across many hospitals to achieve statistically significant sample sizes that can be validated independently of a single research setting, (4) harmonize the observation facts recorded at each institution such that queries can be made across many hospitals in parallel, (5) scale to regional and national collaborations. The purpose of this report is to provide open source software for multi-site clinical studies and to report on early uses of this application. At this time SHRINE implementations have been used for multi-site studies of autism co-morbidity, juvenile idiopathic arthritis, peripartum cardiomyopathy, colorectal cancer, diabetes, and others. The wide range of study objectives and growing adoption suggest that SHRINE may be applicable beyond the research uses and participating hospitals named in this report.
We have designed a Biobank Portal that lets researchers request Biobank samples and genotypic data, query associated electronic health records, and design and download datasets containing de-identified attributes about consented Biobank subjects. This do-it-yourself functionality puts a wide variety and volume of data at the fingertips of investigators, allowing them to create custom datasets for their clinical and genomic research from complex phenotypic data and quickly obtain corresponding samples and genomic data. The Biobank Portal is built upon the i2b2 infrastructure [1] and uses an open-source web client that is available to faculty members and other investigators behind an institutional firewall. Built-in privacy measures [2] ensure that the data in the Portal are utilized only according to the processes to which the patients have given consent.
Objective Integrating and harmonizing disparate patient data sources into one consolidated data portal enables researchers to conduct analysis efficiently and effectively. Materials and Methods We describe an implementation of Informatics for Integrating Biology and the Bedside (i2b2) to create the Mass General Brigham (MGB) Biobank Portal data repository. The repository integrates data from primary and curated data sources and is updated weekly. The data are made readily available to investigators in a data portal where they can easily construct and export customized datasets for analysis. Results As of July 2021, there are 125 645 consented patients enrolled in the MGB Biobank. 88 527 (70.5%) have a biospecimen, 55 121 (43.9%) have completed the health information survey, 43 552 (34.7%) have genomic data and 124 760 (99.3%) have EHR data. Twenty machine learning computed phenotypes are calculated on a weekly basis. There are currently 1220 active investigators who have run 58 793 patient queries and exported 10 257 analysis files. Discussion The Biobank Portal allows noninformatics researchers to conduct study feasibility by querying across many data sources and then extract data that are most useful to them for clinical studies. While institutions require substantial informatics resources to establish and maintain integrated data repositories, they yield significant research value to a wide range of investigators. Conclusion The Biobank Portal and other patient data portals that integrate complex and simple datasets enable diverse research use cases. i2b2 tools to implement these registries and make the data interoperable are open source and freely available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.