Commonly, variance-based global sensitivity analysis methods are popular and applicable to quantify the impact of a set of input variables on output response. However, for many engineering practical problems, the output response is not single but multiple, which makes some traditional sensitivity analysis methods difficult or unsuitable. Therefore, a novel global sensitivity analysis method is presented to evaluate the importance of multi-input variables to multi-output responses. First, assume that a multi-input multi-output system (MIMOS) includes [Formula: see text] variables and [Formula: see text] responses. A set of summatory functions [Formula: see text] and [Formula: see text] are constructed by the addition and subtraction of any two response functions. Naturally, each response function is represented using a set of summatory function. Subsequently, the summatory functions [Formula: see text] and [Formula: see text] are further decomposed based on the high dimensional model representation (HDMR), respectively. Due to the orthogonality of all the decomposed function sub-terms, the variance and covariance of each response function can be represented using the partial variances of all the decomposed function sub-terms on the corresponding summatory functions, respectively. The total fluctuation of MIMOS is calculated by the sum of the variances and covariances on all the response functions. Further, the fluctuation is represented as the sum of the total partial variances for all the [Formula: see text]-order function sub-terms, and the total partial variance is the sum of [Formula: see text] partial variances for the corresponding [Formula: see text]-order function sub-terms. Then, the function sensitivity index (FSI) [Formula: see text] for s-order function sub-terms is defined by the ratio of the total partial variance and total fluctuation, which includes first-order, second-order, and high-order FSI. The variable sensitivity index [Formula: see text] of variable [Formula: see text] is calculated by the sum of all the FSIs including the contribution of variable [Formula: see text]. Finally, numerical example and engineering application are employed to demonstrate the accuracy and practicality of the presented global sensitivity analysis method for MIMOS.
In the design of artillery external ballistics, sensitivity analysis can effectively quantify the influence of multi-source uncertain parameters on the dispersion of projectile landing points to improve the precise attack ability of artillery. However, for a complicated artillery external ballistic system containing multiple inputs and outputs, its mapping relationships are not definite under uncertainty and it is difficult to estimate a comprehensive sensitivity index due to involving the calculation of high dimensional integral. Therefore, a sensitivity analysis method based on the combination of variance and covariance decomposition with the approximate high dimensional model representation (AHDMR) is proposed to measure the influence of muzzle state parameters, projectile characteristic parameters, etc. on projectile landing points under uncertainty in this paper. First, we establish the numerical simulation model of artillery external ballistics by combing the external ballistic theory and Runge–Kutta algorithm to acquire the mapping relationships between the uncertain input parameters and the dispersion of projectile landing points and implement uncertainty analysis under different uncertainty levels (UL) and distributions. Then, with the use of a set of orthogonal polynomials for uniform and Gaussian distribution, respectively, the high dimensional model representation of the mapping relationship is approximately expressed and the compressive sensitivity indices can be effectively estimated based on the Monte Carlo simulation. Moreover, the comparison results of two numerical examples indicate the proposed sensitivity analysis method is accurate and practical. Finally, through the method, the importance rankings of multi-uncertain parameters on projectile landing points for two distributions are effectively quantified under the UL = [0.01, 0.02, 0.03, 0.04, 0.05].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.