Although a role of the intraparietal sulcus (IPS) in grasping is becoming evident, the specific contribution of regions within the IPS remains undefined. In this vein, transcranial magnetic stimulation (TMS) was delivered to the anterior (aIPS), middle (mIPS), and caudal (cIPS) IPS in two tasks designed to dissociate the potential roles of the IPS in either grasp planning or execution (task 1) and its involvement in error detection or error correction (task 2). Determining the involvement of specific regions of the IPS in perceptual (planning and error detection) versus motor (execution and correction) components of grasping allowed us to assess the ecological validity of competing computational models attempting to simulate reach-to-grasp movements. In task 1, we demonstrate that, when no on-line adjustment is necessary, TMS to aIPS (but not mIPS or cIPS) disrupts grasping; this disruption is only elicited when TMS is applied during the execution (but not the planning) phase of the movement. Task 2 reveals that TMS to aIPS (but not mIPS or cIPS) disrupts grasping in the presence of a perturbation; this disruption is only elicited when TMS is applied during the error correction (but not error detection) phase of the movement. We propose that the specific contribution of the aIPS in grasping is in the on-line computation of a difference vector based on motor goal, efference copy, and sensory inputs. This computation is performed for both stable and perturbed motor goals.
The fronto-parietal network has been implicated in the processing of multisensory information for motor control. Recent methodological advances with both fMRI and TMS provide the opportunity to dissect the functionality of this extensive network in humans and may identify distinct contributions of local neural populations within this circuit that are not only related to motor planning, but to goal oriented behavior as a whole. Herein, we review and make parallels between experiments in monkeys and humans on a broad array of motor as well as non-motor tasks in order to characterize the specific contribution of a region in the parietal lobe, the anterior intraparietal sulcus (aIPS). The intent of this article is to review: (1) the historical perspectives on the parietal lobe, particularly the aIPS; (2) extend and update these perspectives based on recent empirical data; and (3) discuss the potential implications of the revised functionality of the aIPS in relationship to complex goal oriented behavior and social interaction. Our contention is that aIPS is a critical node within a network involved in the higher order dynamic control of action, including representation of intended action goals. These findings may be important not only for guiding the design of future experiments investigating related issues but may also have valuable utility in other fields, such social neuroscience and biomedical engineering.
When we reach out to pick something up, our arm is directed to the target by visuomotor networks in the cortical dorsal stream. However, our reach trajectories are influenced also by nontarget objects, which might be construed as potential obstacles. We tested two patients with bilateral dorsal-stream (parietal lesions, both of whom were impaired at pointing to visual stimuli (optic ataxia). We asked them to reach between two cylinders, which varied in location from trial to trial. We found that the patients' reaches remained invariant with changes in obstacle location. In a control task when they were asked to point midway between the two objects, however, their responses shifted in an orderly fashion. We conclude that the dorsal stream provides the visual guidance we automatically build into our movements to avoid potential obstacles, as well as that required to ensure arrival at the target.
2005) 'The role of V5/MT+ in the control of catching movements : an rTMS study. ', Neuropsychologia., 43 (2). pp. 189-198. Further information on publisher's website:https://doi.org/10.1016/j.neuropsychologia. 2004.11.006 Publisher's copyright statement:Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. . We found that she is not only impaired in perceptual tasks but also in catching, suggesting a role for V5/MT+ in vision for both perception and action.However, LM's lesion goes beyond V5/MT+ into more dorsal regions. It is thus possible, that the catching deficit was not produced by damage to V5/MT+ itself. In this case, one would expect that selective interference with V5/MT+ would have no effect on catching.In the present study we tested this prediction by applying rTMS over V5/MT+ of the left hemisphere while healthy subjects were either performing a catching or a reaching task. We found that V5-TMS reduced the speed of the catching but not the reaching response. These results confirm that V5/MT+ is not only involved in perceptual but also in visuomotor tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.