The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by mutation of the telomeric survival motor neuron 1 (SMN1) gene with retention of the centromeric SMN2 gene. We sought to establish whether the potent and specific hydroxamic acid class of histone deacetylase (HDAC) inhibitors activates SMN2 gene expression in vivo and modulates the SMA disease phenotype when delivered after disease onset. Single intraperitoneal doses of 10 mg/kg trichostatin A (TSA) in nontransgenic and SMA model mice resulted in increased levels of acetylated H3 and H4 histones and modest increases in SMN gene expression. Repeated daily doses of TSA caused increases in both SMN2-derived transcript and SMN protein levels in neural tissues and muscle, which were associated with an improvement in small nuclear ribonucleoprotein (snRNP) assembly. When TSA was delivered daily beginning on P5, after the onset of weight loss and motor deficit, there was improved survival, attenuated weight loss, and enhanced motor behavior. Pathological analysis showed increased myofiber size and number and increased anterior horn cell size. These results indicate that the hydroxamic acid class of HDAC inhibitors activates SMN2 gene expression in vivo and has an ameliorating effect on the SMA disease phenotype when administered after disease onset.
Major psychiatric illnesses such as mood disorders and schizophrenia are chronic, recurrent mental illnesses that affect the lives of millions of individuals. Although these disorders have traditionally been viewed as 'neurochemical diseases', it is now clear that they are associated with impairments of synaptic plasticity and cellular resilience. Although most patients with these disorders do not have classic mitochondrial disorders, there is a growing body of evidence to suggest that impaired mitochondrial function may affect key cellular processes, thereby altering synaptic functioning and contributing to the atrophic changes that underlie the deteriorating long-term course of these illnesses. Enhancing mitochondrial function could represent an important avenue for the development of novel therapeutics and also presents an opportunity for a potentially more efficient drug-development process.
Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor gene. To characterize the natural history and define outcome measures for clinical trials, we assessed the clinical history, laboratory findings and muscle strength and function in 57 patients with genetically confirmed disease. We also administered self-assessment questionnaires for activities of daily living, quality of life and erectile function. We found an average delay of over 5 years from onset of weakness to diagnosis. Muscle strength and function correlated directly with serum testosterone levels and inversely with CAG repeat length, age and duration of weakness. Motor unit number estimation was decreased by about half compared to healthy controls. Sensory nerve action potentials were reduced in nearly all subjects. Quantitative muscle assessment and timed 2 min walk may be useful as meaningful indicators of disease status. The direct correlation of testosterone levels with muscle strength indicates that androgens may have a positive effect on muscle function in spinal and bulbar muscular atrophy patients, in addition to the toxic effects described in animal models.
SummaryBackground Friedreich's ataxia (FA) is a progressive, multisystem, degenerative disorder caused by a reduction in frataxin. Loss of frataxin results in mitochondrial dysfunction and oxidative damage in patients and model systems. Previous studies have indicated that the antioxidant idebenone (5 mg/kg daily) reduces cardiac hypertrophy, but defi nite improvement in neurological function has not been shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.