Ricin is a heterodimeric toxin that accumulates in the storage vacuoles of castor bean (Ricinus communis) endosperm. Proricin is synthesized as a single polypeptide precursor comprising the catalytic A chain and the Gal-binding B chain joined by a 12-amino acid linker propeptide. Upon arrival in the vacuole, the linker is removed. Here, we replicate these events in transfected tobacco (Nicotiana tabacum) leaf protoplasts. We show that the internal linker propeptide is responsible for vacuolar sorting and is sufficient to redirect the ricin heterodimer to the vacuole when fused to the A or the B chain. This internal peptide can also target two different secretory protein reporters to the vacuole. Moreover, mutation of the isoleucine residue within an NPIR-like motif of the propeptide affects vacuolar sorting in proricin and in the reconstituted A-B heterodimer. This is the first reported example of a sequence-specific vacuolar sorting signal located within an internal propeptide.
). † These authors contributed equally to this work. SummaryWe have studied the transport of proricin and pro2S albumin to the protein storage vacuoles of developing castor bean (Ricinus communis L.) endosperm. Immunoelectron microscopy and cell fractionation reveal that both proteins travel through the Golgi apparatus and co-localize throughout their route to the storage vacuole. En route to the PSV, the proteins co-localize in large (>200 nm) vesicles, which are likely to represent developing storage vacuoles. We further show that the sequence-specific vacuolar sorting signals of both proricin and pro2SA bind in vitro to proteins that have high sequence similarity to members of the VSR/AtELP/ BP-80 vacuolar sorting receptor family, generally associated with clathrin-mediated traffic to the lytic vacuole. The implications of these findings in relation to the current model for protein sorting to storage vacuoles are discussed.
Ricin is a heterodimeric protein produced in the seeds of the castor oil plant (Ricinus communis). It is exquisitely potent to mammalian cells, being able to fatally disrupt protein synthesis by attacking the Achilles heel of the ribosome. For this enzyme to reach its substrate, it must not only negotiate the endomembrane system but it must also cross an internal membrane and avoid complete degradation without compromising its activity in any way. Cell entry by ricin involves a series of steps: (i) binding, via the ricin B chain (RTB), to a range of cell surface glycolipids or glycoproteins having beta-1,4-linked galactose residues; (ii) uptake into the cell by endocytosis; (iii) entry of the toxin into early endosomes; (iv) transfer, by vesicular transport, of ricin from early endosomes to the trans-Golgi network; (v) retrograde vesicular transport through the Golgi complex to reach the endoplasmic reticulum; (vi) reduction of the disulphide bond connecting the ricin A chain (RTA) and the RTB; (vii) partial unfolding of the RTA to render it translocationally-competent to cross the endoplasmic reticulum (ER) membrane via the Sec61p translocon in a manner similar to that followed by misfolded ER proteins that, once recognised, are targeted to the ER-associated protein degradation (ERAD) machinery; (viii) avoiding, at least in part, ubiquitination that would lead to rapid degradation by cytosolic proteasomes immediately after membrane translocation when it is still partially unfolded; (ix) refolding into its protease-resistant, biologically active conformation; and (x) interaction with the ribosome to catalyse the depurination reaction. It is clear that ricin can take advantage of many target cell molecules, pathways and processes. It has been reported that a single molecule of ricin reaching the cytosol can kill that cell as a consequence of protein synthesis inhibition. The ready availability of ricin, coupled to its extreme potency when administered intravenously or if inhaled, has identified this protein toxin as a potential biological warfare agent. Therapeutically, its cytotoxicity has encouraged the use of ricin in 'magic bullets' to specifically target and destroy cancer cells, and the unusual intracellular trafficking properties of ricin potentially permit its development as a vaccine vector. Combining our understanding of the ricin structure with ways to cripple its unwanted properties (its enzymatic activity and promotion of vascular leak whilst retaining protein stability and important immunodominant epitopes), will also be crucial in the development of a long awaited protective vaccine against this toxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.