The technique of employing specialized particulates for far-field diversion is well-established during hydraulic fracturing treatments in unconventional formations and is being investigated for use in conventional formations. Far-field diverters (FFD) divert fluid away from the wellbore far into the formation. The injection of FFD at the beginning of the treatment provides an additional stress barrier between the producing interval and adjacent layers by depositing at the layer boundaries where higher leak-off is encountered. The ensuing restriction in height growth maximizes fracture extension within the producing zone, optimizing geometry for increased hydrocarbon production while limiting excess water. Polylactic Acid (PLA) polymer is self-degradable, compatible with reservoir fluids, and has a variety of compositions for different temperature applications. Blending proppant with PLA has been seen to significantly improve the strength of the deposited far-field diverter. Therefore, PLA powder and silica proppant are blended to develop Generation-1 far-field diverter (FFD-Gen1). However, many silica proppants have greater density than PLA, leading to separation during transport which prevents these two components from depositing evenly at the upper fracture boundary. This results in a situation in which excessive downward growth is prevented while upward growth is left unchecked. For this reason, both components need to be simultaneously deposited in order to develop an effective seal. Generation-2 far-field diverter (FFD-Gen2) is developed by replacing silica proppant of FFD-Gen1 with a deformable proppant having a density nearly equal to the polymer, which enables uniform deposition on all adjacent formation boundaries where leakoff is encountered. The deformable characteristic improves the pressure withstanding capacity of the diverter pack. The deposition and degradation behaviors are investigated in the laboratory by performing HTHP filter press and plug stability experiments. Experimental findings suggest that the primary selection criteria for acceptable performance are the material's mechanical properties. This methodology is used to select the appropriate FFD materials to optimize fracture geometry in carbonate reservoirs. Successful applications prevent excessive water production and substantially increase hydrocarbon production as illustrated in a three well case studies.
Summary The technique of employing specialized particulates for far-field diversion is well established during hydraulic fracturing treatments in unconventional formations and is being investigated for use in conventional formations. Far-field diverters (FFD) divert fluid away from the wellbore far into the formation. The injection of FFD at the beginning of the treatment provides an additional stress barrier between the producing interval and adjacent layers by depositing at the layer boundaries where a higher leakoff is encountered. The ensuing restriction in height growth maximizes fracture extension within the producing zone, optimizing geometry for increased hydrocarbon production while limiting excess water. Polylactic acid (PLA) polymer is self-degradable, compatible with reservoir fluids, and has a variety of compositions for different temperature applications. Blending proppant with PLA has been seen to significantly improve the strength of the deposited FFD. Therefore, PLA powder and silica proppant are blended to develop Generation-1 FFD (FFD-Gen1). However, many silica proppants have greater density than PLA, leading to separation during transport which prevents these two components from depositing evenly at the upper fracture boundary. This results in a situation in which excessive downward growth is prevented while upward growth is left unchecked. For this reason, both components need to be simultaneously deposited to develop an effective seal. Generation-2 FFD (FFD-Gen2) is developed by replacing the silica proppant of FFD-Gen1 with a deformable proppant having a density nearly equal to the polymer, which enables uniform deposition on all adjacent formation boundaries where leakoff is encountered. The deformable characteristic improves the pressure withstanding capacity of the diverter pack. The deposition and degradation behaviors are investigated in the laboratory by performing high-temperature high-pressure (HTHP) filter press and plug stability experiments. Experimental findings suggest that the primary selection criteria for acceptable performance are the material’s mechanical properties. This methodology is used to select the appropriate FFD materials to optimize fracture geometry in carbonate reservoirs. Successful applications prevent excessive water production and substantially increase hydrocarbon production as illustrated in a three-well case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.