Assembly of small building blocks such as atoms, molecules and nanoparticles into macroscopic structures-that is, 'bottom up' assembly-is a theme that runs through chemistry, biology and material science. Bacteria 1 , macromolecules 2 and nanoparticles 3 can self-assemble, generating ordered structures with a precision that challenges current lithographic techniques. The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice (BNSL) [3][4][5][6][7] can provide a general and inexpensive path to a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. Maximization of the nanoparticle packing density has been proposed as the driving force for BNSL formation 3,8,9 , and only a few BNSL structures have been predicted to be thermodynamically stable. Recently, colloidal crystals with micrometre-scale lattice spacings have been grown from oppositely charged polymethyl methacrylate spheres 10,11 . Here we demonstrate formation of more than 15 different BNSL structures, using combinations of semiconducting, metallic and magnetic nanoparticle building blocks. At least ten of these colloidal crystalline structures have not been reported previously. We demonstrate that electrical charges on sterically stabilized nanoparticles determine BNSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.Face-centred-cubic (f.c.c.) ordering of monodisperse hard spheres dispersed in a liquid permits larger local free space available for each sphere compared to the unstructured phase, resulting in higher translational entropy of the spheres. When the volume fraction of hard spheres approaches ,55%, this ordering enhances the total entropy of the system and drives the ordering phase transition. Entropy-driven crystallization has been studied in great detail both theoretically 12 and experimentally on monodisperse latex particles, whose behaviour can be approximated by hard spheres 13,14 . In a mixture containing spheres of two different sizes (radii R small and R large ), the packing symmetry depends on the size ratio of the small and large spheres (g ¼ R small /R large ) 3,8 . Calculations show that assembly of hard spheres into binary superlattices isostructural with NaCl, AlB 2 and NaZn 13 can be driven by entropy alone without any specific energetic interactions between the spheres 9,15 . Indeed, NaZn 13 -and AlB 2 -type assemblies of silica particles were found in natural Brazilian opals 16 and can be grown from latex spheres 17 . In a certain g range, the packing density of these structures either exceeds or is very close to the density of the close-packed f.c.c. lattice (0.7405), while structures with lower packing densities are predicted to be unstable 8,15 .Despite these predictions, we observed an amazing variety of BNSLs that self-assemble from colloidal solutions of nearly spherical nanoparticles of different materials (Fig. 1). Coheren...
Nanoparticles of CdTe were found to spontaneously reorganize into crystalline nanowires upon controlled removal of the protective shell of organic stabilizer. The intermediate step in the nanowire formation was found to be pearl-necklace aggregates. Strong dipole-dipole interaction is believed to be the driving force of nanoparticle self-organization. The linear aggregates subsequently recrystallized into nanowires whose diameter was determined by the diameter of the nanoparticles. The produced nanowires have high aspect ratio, uniformity, and optical activity. These findings demonstrate the collective behavior of nanoparticles as well as a convenient, simple technique for production of one-dimensional semiconductor colloids suitable for subsequent processing into quantum-confined superstructures, materials, and devices.
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Nanoscale building blocks are individually exceptionally strong because they are close to ideal, defect-free materials. It is, however, difficult to retain the ideal properties in macroscale composites. Bottom-up assembly of a clay/polymer nanocomposite allowed for the preparation of a homogeneous, optically transparent material with planar orientation of the alumosilicate nanosheets. The stiffness and tensile strength of these multilayer composites are one order of magnitude greater than those of analogous nanocomposites at a processing temperature that is much lower than those of ceramic or polymer materials with similar characteristics. A high level of ordering of the nanoscale building blocks, combined with dense covalent and hydrogen bonding and stiffening of the polymer chains, leads to highly effective load transfer between nanosheets and the polymer.
Finding a synthetic pathway to artificial analogs of nacre and bones represents a fundamental milestone in the development of composite materials. The ordered brick-and-mortar arrangement of organic and inorganic layers is believed to be the most essential strength- and toughness-determining structural feature of nacre. It has also been found that the ionic crosslinking of tightly folded macromolecules is equally important. Here, we demonstrate that both structural features can be reproduced by sequential deposition of polyelectrolytes and clays. This simple process results in a nanoscale version of nacre with alternating organic and inorganic layers. The macromolecular folding effect reveals itself in the unique saw-tooth pattern of differential stretching curves attributed to the gradual breakage of ionic crosslinks in polyelectrolyte chains. The tensile strength of the prepared multilayers approached that of nacre, whereas their ultimate Young modulus was similar to that of lamellar bones. Structural and functional resemblance makes clay- polyelectrolyte multilayers a close replica of natural biocomposites. Their nanoscale nature enables elucidation of molecular processes occurring under stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.