The vertical rise of a round plume of light fluid through a surrounding heavier fluid is considered. An inviscid model is analysed in which the boundary of the plume is taken to be a sharp interface. An efficient spectral method is used to solve this nonlinear freeboundary problem, and shows that the plume narrows as it rises. A generalized condition is also introduced at the boundary, and allows the ambient fluid to be entrained into the rising plume. In this case, the fluid plume first narrows then widens as it rises. These features are confirmed by an asymptotic analysis. A viscous model of the same situation is also proposed, based on a Boussinesq approximation. It qualitatively confirms the widening of the plume due to entrainment of the ambient fluid, but also shows the presence of vortex rings around the interface of the rising plume.2010 Mathematics subject classification: 76D25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.