In systems neuroscience, neural activity that represents movements or sensory stimuli is often characterized by spatial tuning curves that may change in response to training, attention, altered mechanics, or the passage of time. A vital step in determining whether tuning curves change is accounting for estimation uncertainty due to measurement noise. In this study, we address the issue of tuning curve stability using methods that take uncertainty directly into account. We analyze data recorded from neurons in primary motor cortex using chronically implanted, multielectrode arrays in four monkeys performing center-out reaching. With the use of simulations, we demonstrate that under typical experimental conditions, the effect of neuronal noise on estimated preferred direction can be quite large and is affected by both the amount of data and the modulation depth of the neurons. In experimental data, we find that after taking uncertainty into account using bootstrapping techniques, the majority of neurons appears to be very stable on a timescale of minutes to hours. Lastly, we introduce adaptive filtering methods to explicitly model dynamic tuning curves. In contrast to several previous findings suggesting that tuning curves may be in constant flux, we conclude that the neural representation of limb movement is, on average, quite stable and that impressions to the contrary may be largely the result of measurement noise.
How interactions between neurons relate to tuned neural responses is a longstanding question in systems neuroscience. Here we use statistical modeling and simultaneous multi-electrode recordings to explore the relationship between these interactions and tuning curves in six different brain areas. We find that, in most cases, functional interactions between neurons provide an explanation of spiking that complements and, in some cases, surpasses the influence of canonical tuning curves. Modeling functional interactions improves both encoding and decoding accuracy by accounting for noise correlations and features of the external world that tuning curves fail to capture. In cortex, modeling coupling alone allows spikes to be predicted more accurately than tuning curve models based on external variables. These results suggest that statistical models of functional interactions between even relatively small numbers of neurons may provide a useful framework for examining neural coding.
Dysfunction of the seventh cranial nerve often results in facial paralysis and loss of the ability to blink the eye, which can lead to corneal scarring, diminished vision, and potential loss of the eye. This study investigated the potential of electrical stimulation of the orbicularis oculi muscle as a means of restoring blink function. An animal model of orbicularis paralysis was created by sectioning the seventh cranial nerve in rabbit. Twenty paralyzed and five normal rabbits were acutely implanted with a subcutaneous stimulating electrode near the margin of the upper eyelid. Biphasic current controlled stimulation pulses were delivered between implanted contacts at the medial and lateral edges of the eyelid. Strength-duration curves for lid twitch threshold were generated, and quantitative measurements of lid closure were made for systematically varied parameters including pulse amplitude, pulse width, number of pulses delivered, and duration of paralysis prior to stimulation. Normal rabbits achieved a greater degree of lid closure due to electrical stimulation than rabbits that had been surgically paralyzed. Of rabbits that had been paralyzed, those demonstrating evidence of at least partial reinnervation achieved a greater degree of lid closure than those demonstrating persistent denervation. Trains of 10 ms biphasic pulses delivered at 50 Hz were found to be the most effective means of eliciting lid closure for the range of parameters tested.
Objective It is quite remarkable that Brain Machine Interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach We have developed a system that uses two independent Weiner filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The classifier combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.