Brain organoids are three-dimensional, tissue-engineered neural models derived from induced pluripotent stem cells that enable studies of neurodevelopmental and disease processes. Mechanical properties of the microenvironment are known to be critical parameters in tissue engineering, but the mechanical consequences of the encapsulating matrix on brain organoid growth and development remain undefined. Here, Matrigel was modified with an interpenetrating network (IPN) of alginate, to tune the mechanical properties of the encapsulating matrix. Brain organoids grown in IPNs were viable, with the characteristic formation of neuroepithelial buds. However, organoid growth was significantly restricted in the stiffest matrix tested. Moreover, stiffer matrixes skewed cell populations toward mature neuronal phenotypes, with fewer and smaller neural rosettes. These findings demonstrate that the mechanics of the culture environment are important parameters in brain organoid development and show that the self-organizing capacity and subsequent architecture of brain organoids can be modulated by forces arising from growth-induced compression of the surrounding matrix. This study therefore suggests that carefully designing the mechanical properties of organoid encapsulation materials is a potential strategy to direct organoid growth and maturation toward desired structures.
The Hippo pathway nuclear effector Yes-associated protein 1 (YAP) potentiates the progression of polycystic kidney disease (PKD) arising from ciliopathies. The mechanisms underlying the increase in YAP expression and transcriptional activity in PKD remain obscure. We observed that in kidneys from mice with juvenile cystic kidney (jck) ciliopathy, the aberrant hyperactivity of mechanistic target of rapamycin complex 1 (mTORC1) driven by ERK1/2 and PI3K/AKT cascades induced endoplasmic reticulum (ER) proteotoxic stress. To reduce it by reprogramming translation, the protein kinase R-like ER kinase (PERK)-eukaryotic initiation factor 2α (eIF2α) arm of the integrated stress response (ISR) was activated. PERK-mediated phosphorylation of eIF2α drove the selective translation of activating transcription factor 4 (ATF4), potentiating YAP expression. In parallel, YAP underwent K63-linked polyubiquitination by SCF-S-phase kinase-associated protein 2 (SKP2) E3 ubiquitin ligase, a Hippo-independent, nonproteolytic ubiquitination that enhances YAP nuclear trafficking and transcriptional activity in cancer cells. Defective ISR cellular adaptation to ER stress in eIF2α-phosphorylation-deficient jck mice further augmented YAP-mediated transcriptional activity and renal cyst growth. Conversely, pharmacological tuning down of ER stress-ISR activity and SKP2 expression in jck mice by administration of tauroursodeoxycholic acid (TUDCA) or tolvaptan, impeded these processes. Restoring ER homeostasis, and/or interfering with the SKP2-YAP interaction represent novel potential therapeutic avenues for stemming the progression of renal cystogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.