Hypertension, obesity, chronic kidney disease and type 2 diabetes are comorbidities that have very high prevalence among persons with hyperuricemia (serum urate > 6.8 mg/dL) and gout. Here we use multivariate genetic models to test the hypothesis that the co-association of traits representing hyperuricemia and its comorbidities is genetically based. Using Bayesian wholegenome regression models, we estimated the genetic marker-based variance and the covariance between serum urate, serum creatinine, systolic blood pressure (SBP), blood glucose and body mass index (BMI) from two independent family-based studies:The Framingham Heart Study-FHS and the Hypertension Genetic Epidemiology Network study-HyperGEN. The main genetic findings that replicated in both FHS and HyperGEN, were (1) creatinine was genetically correlated only with urate and (2) BMI was genetically correlated with urate, SBP, and glucose. The environmental covariance among the traits was generally highest for trait pairs involving BMI. The genetic overlap of traits representing the comorbidities of hyperuricemia and gout appears to cluster in two separate axes of genetic covariance. Because creatinine is genetically correlated with urate but not with metabolic traits, this suggests there is one genetic module of shared loci associated with hyperuricemia and chronic kidney disease. Another module of shared loci may account for the association of hyperuricemia and metabolic syndrome. This study provides a clear quantitative genetic basis for the clustering of comorbidities with hyperuricemia.
Purpose of review To review advances in the understanding of potentially causal relationships between gout, hyperuricemia and comorbidities. Recent findings Observational studies reveal 4–5 comorbidity clusters in gout patients. There tend to be gout alone, gout with chronic kidney disease and gout with other metabolic comorbidities. However, heterogeneous study populations and confounding make inference difficult for causal relationships. Mendelian randomization leverages genetic information as an instrumental variable to indicate putatively causal relationships between traits of epidemiological interest. Thus far, Mendelian randomization has not indicated widespread causal relationships of serum urate for comorbid traits. However, BMI has a small causal effect on serum urate, which may partially explain the increased prevalence of metabolic syndrome and cardiovascular disease among those with gout and hyperuricemia. There is a lack of robust and sufficiently powered Mendelian randomization studies for many serum urate-associated traits, such as hypertension. No adequately powered studies have been completed for gout and its comorbidities. Summary Although observational studies indicate putative causal effects of serum urate on comorbidities, Mendelian randomization studies suggest that serum urate does not have a causal role on the various tested comorbidities. There remains work to be done in clarifying the causal role of gout per se on the same traits.
Background Metabolic syndrome and hyperinsulinemia are associated with hyperuricemia. Insulin infusion in healthy volunteers elevates serum urate (SU) by activating net urate reabsorption in the renal proximal tubule, whereas IGF-1 infusion reduces SU by mechanisms unknown. Variation within the IGF1R gene also affects SU levels.Methods Colocalization analyses of a SU genome-wide association studies signal at IGF1R and expression quantitative trait loci signals in cis using COLOC2, RT-PCR, Western blotting, and urate transport assays in transfected HEK 293T cells and in Xenopus laevis oocytes.Results Genetic association at IGF1R with SU is stronger in women and is mediated by control of IGF1R expression. Inheritance of the urate-lowering homozygous genotype at the SLC2A9 locus is associated with a differential effect of IGF1R genotype between men and women. IGF-1, through IGF-1R, stimulated urate uptake in human renal proximal tubule epithelial cells and transfected HEK 293T cells, through activation of IRS1, PI3/Akt, MEK/ERK, and p38 MAPK; urate uptake was inhibited in the presence of uricosuric drugs, specific inhibitors of protein tyrosine kinase, PI3 kinase (PI3K), ERK, and p38 MAPK. In X. laevis oocytes expressing ten individual urate transporters, IGF-1 through endogenous IGF-1R stimulated urate transport mediated by GLUT9, OAT1, OAT3, ABCG2, and ABCC4 and inhibited insulin's stimulatory action on GLUT9a and OAT3. IGF-1 significantly activated Akt and ERK. Specific inhibitors of PI3K, ERK, and PKC significantly affected IGF-1 stimulation of urate transport in oocytes. ConclusionsThe combined results of infusion, genetics, and transport experiments suggest that IGF-1 reduces SU by activating urate secretory transporters and inhibiting insulin's action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.